已知:△ABD和△CBD關(guān)于直線BD對稱(點A的對稱點是點C),點E、F分別是線段BC和線段BD上的點,且點F在線段EC的垂直平分線上,連接AF、AE,AE交BD于點G.

(1)如圖l,求證:∠EAF=∠ABD;
(2)如圖2,當(dāng)AB=AD時,M是線段AG上一點,連接BM、ED、MF,MF的延長線交ED于點N,∠MBF= ∠BAF,AF=AD,試探究線段FM和FN之間的數(shù)量關(guān)系,并證明你的結(jié)論.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知:△ABD和△ACE都是直角三角形,且∠ABD=∠ACE=90°.如圖甲,連接DE,設(shè)M為DE的中點.
(1)說明:MB=MC;
(2)設(shè)∠BAD=∠CAE,固定△ABD,讓Rt△ACE繞頂點A在平面內(nèi)旋轉(zhuǎn)到圖乙的位置,試問:MB=MC是否還能成立?并證明其結(jié)論.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•哈爾濱)已知:△ABD和△CBD關(guān)于直線BD對稱(點A的對稱點是點C),點E,F(xiàn)分別是線段BC和線段BD上的點,且點F在線段EC的垂直平分線上,連接AF,AE,AE交BD于點G.
(1)如圖1,求證:∠EAF=∠ABD;
(2)如圖2,當(dāng)AB=AD時,M是線段AG上一點,連接BM,ED,MF,MF的延長線交ED于點N,∠MBF=
1
2
∠BAF,AF=
2
3
AD,試探究FM和FN之間的數(shù)量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1所示,已知在△ABD和△AEC中,AC=AD,∠CAD=∠BAE,AB=AE
(1)如圖1,試說明:△ABD≌△AEC;
(2)如圖1,若∠CAD=35°,∠E=56°,∠D=40°,
①試求:∠EOB的度數(shù);
②將△AEC繞點A逆時針旋轉(zhuǎn)α度(0°<α<180°),問當(dāng)α為多少度時,直線CE分別與△ABD的三邊所在的直線垂直?(請直接寫出答案).
(3)如圖2將△AEC繞點A順時針旋轉(zhuǎn)后得到△ABD,并使點D,E,A三點在同一條直線上,若AD=2AB,連接CD,若△CDE的面積為6cm2,你能求出四邊形ABDC的面積嗎?若能,請求出來;若不能,請你說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1所示,已知在△ABD和△AEC中,,
【小題1】如圖1,試說明:;
【小題2】如圖1,若,
①試求:的度數(shù)
②將繞點A逆時針旋轉(zhuǎn)度(),問當(dāng)為多少度時,直線CE分別與的三邊所在的直線垂直?(請直接寫出答案)。
【小題3】如圖2將繞點A逆時針旋轉(zhuǎn)后得到,并使點D,E,A三點在同一條直線上,若,連接CD,若的面積為6cm2,你能求出四邊形ABDC的面積嗎?若能,請求出來;若不能,請你說明理由。

查看答案和解析>>

同步練習(xí)冊答案