22、如圖,AD為△ABC的角平分線,DE⊥AB,DF⊥AC,垂足分別為E,F(xiàn),連接EF,EF交AD于點(diǎn)G、試判斷線段AD與EF的位置關(guān)系,并證明你的結(jié)論.
分析:根據(jù)角平分線的性質(zhì),得DE=DF,根據(jù)線段垂直平分線性質(zhì)定理的逆定理,得點(diǎn)D在EF的垂直平分線上;根據(jù)等角對(duì)等邊,AE=AF,則點(diǎn)A在EF的垂直平分線上,從而證明結(jié)論.
解答:解:AD垂直平分EF.理由如下:
∵AD為△ABC的角平分線,DE⊥AB于E,DF⊥AC于F,
∴DE=DF.
∴點(diǎn)D在EF的垂直平分線上,∠DEF=∠DFE,
∵∠DEA=∠DFA=90°,
∴∠FEA=∠EFA,
∴AE=AF,
∴點(diǎn)A在EF的垂直平分線上,
∴AD垂直平分EF.
點(diǎn)評(píng):此題主要是綜合運(yùn)用了角平分線的性質(zhì)定理和線段垂直平分線性質(zhì)定理的逆定理.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,AD為△ABC的中線,∠ADC=45°,把△ADC沿AD對(duì)折,點(diǎn)C落在點(diǎn)C′的位置,BC=4,求BC′的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,AD為△ABC的中線,BE為△ABD的中線.
(1)在△BED中作BD邊上的高,垂足為F;
(2)若△ABC的面積為20,BD=5.
①△ABD的面積為
 
,
②求△BDE中BD邊上的高EF的長(zhǎng);
(3)過(guò)點(diǎn)E作EG∥BC,交AC于點(diǎn)G,連接EC、DG且相交于點(diǎn)O,若S△ABC=2m,又S△COD=n,求S△GOC.(用含m、n的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,AD為△ABC的中線,BE為三角形ABD中線,
(1)∠ABE=15°,∠BAD=35°,求∠BED的度數(shù);
(2)在△BED中作BD邊上的高;
(3)若△ABC的面積為60,BD=5,則點(diǎn)E到BC邊的距離為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,AD為△ABC的中線,BE為△ABD的中線.
(1)∠ABE=15°,∠BAD=26°,求∠BED的度數(shù);
(2)若△ABC的面積為40,BD=5,則△BDE中BD邊上的高為多少.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,AD為△ABC的中線,BE為△ABD的中線.
(1)∠ABE=15°,∠BAD=40°,求∠BED的度數(shù);
(2)作圖:在△BED中作BD邊上的高,垂足為F;
(3)若△ABC的面積為60,BD=6,則△BDE中BD邊上的高為多少?(請(qǐng)寫(xiě)出解題的必要過(guò)程)
(4)過(guò)點(diǎn)E作EG∥BC,交AC于點(diǎn)G,連接EC、DG且相交于點(diǎn)O,若S△ABC=m,S△COD=n,求S△EOD(用含m、n的代數(shù)式表示)

查看答案和解析>>

同步練習(xí)冊(cè)答案