(1)如圖(1),已知:在△ABC中,∠BAC=90°,AB=AC,直線m經過點A,BD⊥直線m, CE⊥直線m,垂足分別為點D、E.證明:DE=BD+CE.
(2) 如圖(2),將(1)中的條件改為:在△ABC中,AB=AC,D、A、E三點都在直線m上,并且有∠BDA=∠AEC=∠BAC=,其中為任意銳角或鈍角.請問結論DE=BD+CE是否成立?如成立,請你給出證明;若不成立,請說明理由.
(3) 拓展與應用:如圖(3),D、E是D、A、E三點所在直線m上的兩動點(D、A、E三點互不重合),點F為∠BAC平分線上的一點,且△ABF和△ACF均為等邊三角形,連接BD、CE,若∠BDA=∠AEC=∠BAC,試判斷△DEF的形狀.
解析:(1)因為DE=DA+AE,故通過證,得出DA=EC,AE=BD,從而證得DE=BD+CE.
(2)成立,仍然通過證明,得出BD=AE,AD=CE,所以DE=DA+AE=EC+BD.
(3)由得BD=AE,,與均等邊三角形,得,F(xiàn)B=FA,所以,即,所以,所以FD=FE,,再根據(jù),得,即,故是等邊三角形.
證明:(1)∵BD⊥直線m,CE⊥直線m
∴∠BDA=∠CEA=90°
∵∠BAC=90°
∴∠BAD+∠CAE=90°
∵∠BAD+∠ABD=90°
∴∠CAE=∠ABD
又AB=AC
∴△ADB≌△CEA
∴AE=BD,AD=CE
∴DE=AE+AD= BD+CE
(2)∵∠BDA =∠BAC=,
∴∠DBA+∠BAD=∠BAD +∠CAE=180°—
∴∠DBA=∠CAE
∵∠BDA=∠AEC=,AB=AC
∴△ADB≌△CEA
∴AE=BD,AD=CE
∴DE=AE+AD=BD+CE
(3)由(2)知,△ADB≌△CEA,
BD=AE,∠DBA =∠CAE
∵△ABF和△ACF均為等邊三角形
∴∠ABF=∠CAF=60°
∴∠DBA+∠ABF=∠CAE+∠CAF
∴∠DBF=∠FAE…
∵BF=AF
∴△DBF≌△EAF…
∴DF=EF,∠BFD=∠AFE
∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°
∴△DEF為等邊三角形.
點撥:利用全等三角形的性質證線段相等是證兩條線段相等的重要方法.
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
3 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
3 |
3 |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com