如圖M為線段AB的中點(diǎn),AE與BD交于點(diǎn)C,∠DME=∠A=∠B=45°,且DM交AC于F,ME交BC于G,連接FG,若AB=,AF=3,則BG=    ,F(xiàn)G=   
【答案】分析:根據(jù)已知條件,∠DME=∠A=∠B=45度,結(jié)合圖形上的公共角∠E,即可推出AMF∽△BGM,再根據(jù)相似三角形的性質(zhì),推出BG的長(zhǎng)度,依據(jù)銳角三角函數(shù)推出AC的長(zhǎng)度,即可求出CG、CF的長(zhǎng)度,繼而推出FG的長(zhǎng)度.
解答:解:∵∠AFM=∠DME+∠E(外角定理),
∠DME=∠A=∠B(已知),
∴∠AFM=∠DME+∠E=∠A+∠E=∠BMG,∠A=∠B,
∴△AMF∽△BGM,
∵∠DME=∠A=∠B=45°
∴AC=BC,∠ACB=90°,
∴AC⊥BC,
∵M(jìn)為AB的中點(diǎn),
∴AM=BM=2,
∵△AMF∽△BGM,
,
∴BG==
AC=BC=4cos45°=4,
∴CG=4-=,CF=4-3=1,
在Rt△FCG中,由勾股定理得:
FG===
故答案為:,
點(diǎn)評(píng):本題主要考查相似三角形的判定和性質(zhì)、解直角三角形、等腰三角形的性質(zhì),解題的關(guān)鍵找到相似的三角形,根據(jù)其性質(zhì)求出BG、FG的長(zhǎng)度.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖1,在平面直角坐標(biāo)系中,拋物線y=
1
4
x2-6
與直線y=
1
2
x
相交于A,B兩點(diǎn).
(1)求線段AB的長(zhǎng);
(2)若一個(gè)扇形的周長(zhǎng)等于(1)中線段AB的長(zhǎng),當(dāng)扇形的半徑取何值時(shí),扇形的面積最大,最大面積是多少;
(3)如圖2,線段AB的垂直平分線分別交x軸、y軸于C,D兩點(diǎn),垂足為點(diǎn)M,分別求出OM,OC,OD的長(zhǎng),并驗(yàn)證等式
1
OC2
+
1
OD2
=
1
OM2
是否成立;
(4)如圖3,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足為D,設(shè)BC=a,AC=b,AB=c.CD=b,試說(shuō)明:
1
a2
+
1
b2
=
1
h2

精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:第2章《二次函數(shù)》中考題集(38):2.7 最大面積是多少(解析版) 題型:解答題

如圖1,在平面直角坐標(biāo)系中,拋物線與直線相交于A,B兩點(diǎn).
(1)求線段AB的長(zhǎng);
(2)若一個(gè)扇形的周長(zhǎng)等于(1)中線段AB的長(zhǎng),當(dāng)扇形的半徑取何值時(shí),扇形的面積最大,最大面積是多少;
(3)如圖2,線段AB的垂直平分線分別交x軸、y軸于C,D兩點(diǎn),垂足為點(diǎn)M,分別求出OM,OC,OD的長(zhǎng),并驗(yàn)證等式是否成立;
(4)如圖3,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足為D,設(shè)BC=a,AC=b,AB=c.CD=b,試說(shuō)明:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:第6章《二次函數(shù)》中考題集(41):6.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖1,在平面直角坐標(biāo)系中,拋物線與直線相交于A,B兩點(diǎn).
(1)求線段AB的長(zhǎng);
(2)若一個(gè)扇形的周長(zhǎng)等于(1)中線段AB的長(zhǎng),當(dāng)扇形的半徑取何值時(shí),扇形的面積最大,最大面積是多少;
(3)如圖2,線段AB的垂直平分線分別交x軸、y軸于C,D兩點(diǎn),垂足為點(diǎn)M,分別求出OM,OC,OD的長(zhǎng),并驗(yàn)證等式是否成立;
(4)如圖3,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足為D,設(shè)BC=a,AC=b,AB=c.CD=b,試說(shuō)明:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:第26章《二次函數(shù)》中考題集(39):26.3 實(shí)際問(wèn)題與二次函數(shù)(解析版) 題型:解答題

如圖1,在平面直角坐標(biāo)系中,拋物線與直線相交于A,B兩點(diǎn).
(1)求線段AB的長(zhǎng);
(2)若一個(gè)扇形的周長(zhǎng)等于(1)中線段AB的長(zhǎng),當(dāng)扇形的半徑取何值時(shí),扇形的面積最大,最大面積是多少;
(3)如圖2,線段AB的垂直平分線分別交x軸、y軸于C,D兩點(diǎn),垂足為點(diǎn)M,分別求出OM,OC,OD的長(zhǎng),并驗(yàn)證等式是否成立;
(4)如圖3,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足為D,設(shè)BC=a,AC=b,AB=c.CD=b,試說(shuō)明:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2007年廣東省深圳市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2007•深圳)如圖1,在平面直角坐標(biāo)系中,拋物線與直線相交于A,B兩點(diǎn).
(1)求線段AB的長(zhǎng);
(2)若一個(gè)扇形的周長(zhǎng)等于(1)中線段AB的長(zhǎng),當(dāng)扇形的半徑取何值時(shí),扇形的面積最大,最大面積是多少;
(3)如圖2,線段AB的垂直平分線分別交x軸、y軸于C,D兩點(diǎn),垂足為點(diǎn)M,分別求出OM,OC,OD的長(zhǎng),并驗(yàn)證等式是否成立;
(4)如圖3,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足為D,設(shè)BC=a,AC=b,AB=c.CD=b,試說(shuō)明:

查看答案和解析>>

同步練習(xí)冊(cè)答案