已知:如圖,點C為線段AB延長線上一點,△AMC,△BNC是等邊三角形,且在線段AB的同側(cè).求證:AN=MB.

答案:略
解析:

證明:∵△AMC、△BNC是等邊三角形,

AC=MC,NC=BC

在△ACN和△MCB中,

∴△CAN≌△MCB(SAS)

AN=MB


提示:

欲證AN=MB,通過觀察圖形,可證明ANMB所在的△ACN和△MCB全等.由于△AMC、△BNC是等邊三角形,∴有AC=MC,NC=BC,又∵∠C為兩個三角形的公共角,故證三角形全等的條件已具備.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,點E為?ABCD對角線AC上的一點,點F在BE的延長線上,且EF=BE,EF與CD相交于點G.
求證:DF∥AC.
(請用兩種方法證明,可以添輔助線,可以不添輔助線,如果兩種方法都添輔助線,要求是不同位置的線.)
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

26、已知:如圖,點O為直線AB上一點,過點O在直線AB的同側(cè)作射線OD、OC、OE,且OD是∠AOC的平分線,∠DOE=90°,請判斷OE是否是∠BOC的平分線,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,點P為線段AB上的動點(與A、B兩點不重合).在同一平面內(nèi),把線段AP、BP分別折成△CDP、△EFP,其中∠CDP=∠EFP=90°,且D、P、F三點共線.若△CDP、△EFP均為等腰三角形,且DF=2,求AB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知:如圖,點E為?ABCD對角線AC上的一點,點F在BE的延長線上,且EF=BE,EF與CD相交于點G.
求證:DF∥AC.
(請用兩種方法證明,可以添輔助線,可以不添輔助線,如果兩種方法都添輔助線,要求是不同位置的線.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知:如圖,點O為直線AB上一點,過點O在直線AB的同側(cè)作射線OD、OC、OE,且OD是∠AOC的平分線,∠DOE=90°,請判斷OE是否是∠BOC的平分線,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案