【題目】如圖,點為等邊三角形內一點,且,則的最小值為______

【答案】

【解析】

CD為邊在CD的右側作等邊三角形CDE,連接AE,結合等邊三角形ABC可證△ACE△BCD,進而可證得∠AED∠AEC∠CED60°,過點AAF⊥BE于點F,利用三角函數(shù)還可求得,再根據(jù)ADAF的大小關系可得,進而求得答案.

解:如圖,以CD為邊在CD的右側作等邊三角形CDE,連接AE,

∵△CDE和△ABC為等邊三角形,

CDCEACBC,∠DCE∠ACB∠CDE∠CED60°,

∠BDC120°

∴∠BDC∠CDE180°,

B、D、E在同一直線上,

∠DCE∠ACB,

∴∠DCE∠ACD∠ACB∠ACD,

∠ACE∠BCD

△ACE△BCD中,

∴△ACE△BCDSAS),

∴AEBD,∠AEC∠BDC120°

∴∠AED∠AEC∠CED60°,

過點AAF⊥BE于點F

Rt△AFE中,sin∠AEF,

sin60°,

當點D不與點F重合時,ADAF,

,

當點D與點F重合時,ADAF,

,

,

,

的最小值為,

故答案為:

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】快車與慢車分別從甲乙兩地同時相向出發(fā),勻速而行,快車到達乙地后停留,然后按原路原速返回,快車比慢車晚到達甲地,快慢兩車距各自出發(fā)地的路程與所用的時間的關系如圖所示.

1)由圖可知快車的速度為______;慢車的速度為______

2)求出發(fā)長時間后,快慢兩車距各自出發(fā)地的路程相等;

3)快慢兩車出發(fā)多少相距?直接寫出答案.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知的外接圓,的直徑,作射線,使得平分,過點于點

1)求證:的切線;

2)若,則的半徑為____________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某輪船以每小時30海里的速度向正東方向航行,上午800,測得小島C在輪船A的北偏東45°方向上;上午1000,測得小島C在輪船B的北偏西30°方向上,則輪船在航行中離小島最近的距離約為__海里(精確到1海里,參考數(shù)據(jù)1.4141.732).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義:有一組對邊與一條對角線均相等的四邊形為對等四邊形,這條對角線又稱對等線.

1)如圖1,在四邊形ABCD中,∠C=∠BDCEAB的中點,DEAB.求證:四邊形ABCD是對等四邊形.

2)如圖2,在5×4的方格紙中,AB在格點上,請畫出一個符合條件的對等四邊形ABCD,使BD是對等線,C,D在格點上.

3)如圖3,在圖(1)的條件下,過點EAD的平行線交BDBC于點F,G,連結DG,若DGEG,DG2,AB5,求對等線BD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形內接于⊙,且.延長至點,使,連接

1)求證:平分

2)若,求證:是⊙的切線.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為組織代表隊參加市拜炎帝、誦經典吟誦大賽,初賽后對選手成績進行了整理,分成5個小組(x表示成績,單位:分),A組:75≤x80;B組:80≤x85;C組:85≤x90D組:90≤x95;E組:95≤x100.并繪制出如圖兩幅不完整的統(tǒng)計圖.

請根據(jù)圖中信息,解答下列問題:

1)參加初賽的選手共有 名,請補全頻數(shù)分布直方圖;

2)扇形統(tǒng)計圖中,C組對應的圓心角是多少度?E組人數(shù)占參賽選手的百分比是多少?

3)學校準備組成8人的代表隊參加市級決賽,E6名選手直接進入代表隊,現(xiàn)要從D組中的兩名男生和兩名女生中,隨機選取兩名選手進入代表隊,請用列表或畫樹狀圖的方法,求恰好選中一名男生和一名女生的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某環(huán)保器材公司銷售一種市場需求較大的新型產品,已知每件產品的進價為40元,經銷過程中測出銷售量y(萬件)與銷售單價x(元)存在如圖所示的一次函數(shù)關系,每年銷售該種產品的總開支z(萬元)(不含進價)與年銷量y(萬件)存在函數(shù)關系z=10y+42.5

1)求y關于x的函數(shù)關系式;

2)寫出該公司銷售該種產品年獲利w(萬元)關于銷售單價x(元)的函數(shù)關系式;(年獲利=年銷售總金額一年銷售產品的總進價一年總開支金額)當銷售單價x為何值時,年獲利最大?最大值是多少?

3)若公司希望該產品一年的銷售獲利不低于57.5萬元,請你利用(2)小題中的函數(shù)圖象幫助該公司確定這種產品的銷售單價的范圍.在此條件下要使產品的銷售量最大,你認為銷售單價應定為多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知點P(,)和直線y=kx+b,則點P到直線y=kx+b距離證明可用公式d= 計算.

例如:求點P(﹣1,2)到直線y=3x+7的距離.

解:因為直線y=3x+7,其中k=3,b=7.

所以點P(﹣1,2)到直線y=3x+7的距離為:d== = =

根據(jù)以上材料,解答下列問題:

(1)求點P(1,﹣1)到直線y=x﹣1的距離;

(2)已知⊙Q的圓心Q坐標為(0,5),半徑r2,判斷⊙Q與直線y=x+9的位置關系并說明理由;

(3)已知直線y=﹣2x+4y=﹣2x﹣6平行,求這兩條直線之間的距離.

查看答案和解析>>

同步練習冊答案