(2012•西城區(qū)一模)已知:如圖1,矩形ABCD中,AB=6,BC=8,E、F、G、H分別是AB、BC、CD、DA四條邊上的點(且不與各邊頂點重合),設m=EF+FG+GH+HE,探索m的取值范圍.
(1)如圖2,當E、F、G、H分別是AB、BC、CD、DA四邊中點時,m=
20
20

(2)為了解決這個問題,小貝同學采用軸對稱的方法,如圖3,將整個圖形以CD為對稱軸翻折,接著再連續(xù)翻折兩次,
從而找到解決問題的途徑,求得m的取值范圍.①請在圖3中補全小貝同學翻折后的圖形;②m的取值范圍是
20≤m<28
20≤m<28

分析:(1)利用勾股定理求出矩形對角線的長度,再利用三角形中位線的性質(zhì)得出EH=
1
2
BD,EF=
1
2
AC,F(xiàn)G=
1
2
BD,HG=
1
2
AC,進而求出即可;
(2)①利用軸對稱圖形的性質(zhì)得出答案即可;
②利用兩點之間線段最短以及三角形三邊關系得出m的取值范圍即可.
解答:解:(1)如圖2,連接AC,BD,
∵在矩形ABCD中,AB=6,BC=8,
∴AC=BD=
62+82
=10,
∵E、F、G、H分別是AB、BC、CD、DA四邊中點,
∴EH,EF,F(xiàn)G,HG,分別是△ABD,△ABC,△BCD,△ACD的中位線,
∴EH=
1
2
BD,EF=
1
2
AC,F(xiàn)G=
1
2
BD,HG=
1
2
AC,
∴m=EF+FG+GH+HE=AC+BD=10+10=20;   
                     
(2)①如圖3所示(虛線可以不畫),


②由圖形可知,四邊形的周長即折線HM的長,由兩點之間線段最短可知,折線HM≥20,即周長不小于20;                  
又由題可知,四邊形周長小于矩形ABCD的周長,即周長小于28,
故20≤m<28.
故答案為:20;20≤m<28.
點評:此題主要考查了翻折變換的性質(zhì)以及矩形的性質(zhì)和三角形中位線的性質(zhì)等知識,利用翻折變換的性質(zhì)得出折線HM與四邊形的周長關系是解題關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2012•西城區(qū)一模)把(x-1)2-9因式分解的結(jié)果是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•西城區(qū)一模)(1)解不等式:x>
1
2
x+1
;            
(2)解方程組
x-2y=0
3x+2y=8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•西城區(qū)一模)已知一元二次方程x2+ax+a-2=0.
(1)求證:不論a為何實數(shù),此方程總有兩個不相等的實數(shù)根;
(2)設a<0,當二次函數(shù)y=x2+ax+a-2的圖象與x軸的兩個交點的距離為
13
時,求出此二次函數(shù)的解析式;
(3)在(2)的條件下,若此二次函數(shù)圖象與x軸交于A、B兩點,在函數(shù)圖象上是否存在點P,使得△PAB的面積為
3
13
2
?若存在求出P點坐標,若不存在請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•西城區(qū)一模)如圖,在△ABC中,點D是BC上一點,∠B=∠DAC=45°.
(1)如圖1,當∠C=45°時,請寫出圖中一對相等的線段;
AB=AC或AD=BD=CD;
AB=AC或AD=BD=CD;

(2)如圖2,若BD=2,BA=
3
,求AD的長及△ACD的面積.

查看答案和解析>>

同步練習冊答案