精英家教網(wǎng)已知:如圖,△PQR是等邊三角形,∠APB=120°
求證:(1)△PQA∽△BRP;(2)AQ•RB=QR2
分析:(1)由于△PQR是等邊三角形,那么∠PQR=∠PRQ=60°,則∠PQA=∠BRP=120°,利用∠PQR是△PQA的外角,可得∠PQR=∠APQ+∠PAQ=60°,而∠APB=120°,利用三角形內(nèi)角和定理可得∠PAQ+∠RBP=60°,于是有∠APQ=∠RBP,利用相似三角形的判定可得△PQA∽△BRP;
(2)由(1)知△PQA∽△BRP,可得比例線段
AQ
PQ
=
PR
BR
,而△PQR是等邊三角形,可知PQ=QR=PR,于是有AQ•RB=QR2
解答:解:(1)∵△PQR是等邊三角形,
∴∠PQR=∠PRQ=60°,
∴∠PQA=∠BRP=120°,
又∵∠PQR是△PQA的外角,
∴∠PQR=∠APQ+∠PAQ=60°,
∵∠APB=120°,
∴∠PAQ+∠RBP=60°,
∴∠APQ=∠RBP,
∴△PQA∽△BRP;

(2)∵△PQA∽△BRP,
AQ
PQ
=
PR
BR
,
又∵△PQR是等邊三角形,
∴PQ=RQ=PR,
∴AQ•RB=QR2
點評:本題利用了等邊三角形的性質、相似三角形的判定和性質、三角形外角的性質、三角形的內(nèi)角和定理.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知:如圖,△PQR是等邊三角形,∠APB=120°,
求證:QR2=AQ•RB.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,△PQR是等邊三角形,∠APB=120°
求證:△PAQ∽△BPR.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

已知:如圖,△PQR是等邊三角形,∠APB=120°,
求證:QR2=AQ•RB.

查看答案和解析>>

科目:初中數(shù)學 來源:2009-2010學年福建省廈門市灌口中學九年級(上)期中數(shù)學試卷(解析版) 題型:解答題

已知:如圖,△PQR是等邊三角形,∠APB=120°
求證:(1)△PQA∽△BRP;(2)AQ•RB=QR2

查看答案和解析>>

同步練習冊答案