【題目】如圖,在ABCD中,對角線AC與BD相交于點O,點E,F分別為OB,OD的中點,延長AE至G,使EG=AE,連接CG.
(1)求證:△ABE≌△CDF;
(2)當AB與AC滿足什么數(shù)量關系時,四邊形EGCF是矩形?請說明理由.
【答案】(1)見解析;(2)AC=2AB時,四邊形EGCF是矩形;理由見解析
【解析】
(1)由平行四邊形的性質得出AB=CD,AB∥CD,OB=OD,OA=OC,由平行線的性質得出∠ABE=∠CDF,證出BE=DF,由SAS證明△ABE≌△CDF即可;
(2)證出AB=OA,由等腰三角形的性質得出AG⊥OB,∠OEG=90°,同理:CF⊥OD,得出EG∥CF,由三角形中位線定理得出OE∥CG,EF∥CG,得出四邊形EGCF是平行四邊形,即可得出結論.
(1)證明:∵四邊形ABCD是平行四邊形,
∴AB=CD,AB∥CD,OB=OD,OA=OC,
∴∠ABE=∠CDF,
∵點E,F分別為OB,OD的中點,
∴BE=OB,DF=OD,
∴BE=DF,
∴△ABE≌△CDF(SAS);
(2)解:當AC=2AB時,四邊形EGCF是矩形;理由如下:
∵AC=2OA,AC=2AB,
∴AB=OA,
∵E是OB的中點,
∴AG⊥OB,
∴∠OEG=90°,
同理:CF⊥OD,
∴AG∥CF,
∴EG∥CF,
∵EG=AE,OA=OC,
∴OE是△ACG的中位線,
∴OE∥CG,
∴EF∥CG,
∴四邊形EGCF是平行四邊形,
∵∠OEG=90
∴四邊形EGCF是矩形.
科目:初中數(shù)學 來源: 題型:
【題目】小夏同學從家到學校有,兩條不同的公交線路.為了解早高峰期間這三條線路上的公交車從甲地到乙地的用時情況,在每條線路上隨機選取了500個班次的公交車,收集了這些班次的公交車用時(單位:分鐘)的數(shù)據(jù),統(tǒng)計如下:
公交車用時 頻數(shù) 公交車路線 | 總計 | ||||
59 | 151 | 166 | 124 | 500 | |
43 | 57 | 149 | 251 | 500 |
據(jù)此估計,早高峰期間,乘坐線路“用時不超過35分鐘”的概率為__________,若要在40分鐘之內到達學校,應盡量選擇乘坐__________(填或)線路.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下面內容,并按要求解決問題:
問題:“在平面內,已知分別有2個點,3個點,4個點,5個點,…,個點,其中任意三個點都不在同一條直線上經過每兩點畫一條直線,它們可以分別畫多少條直線?”
探究:為了解決這個問題,希望小組的同學們,設計了如下表格進行探究:(為了方便研究問題,圖中每條線段表示過線段兩端點的一條直線)
點數(shù) | 2 | 3 | 4 | 5 | … | |
示意圖 | … | |||||
直線條數(shù) | 1 | … |
請解答下列問題:
(1)請幫助希望小組歸納,并直接寫出結論:當平面內有個點時,直線條數(shù)為______;
(2)若某同學按照本題中的方法,共畫了28條直線,求該平面內有多少個已知點?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=2,與x軸的一個交點坐標為(4,0),其部分圖象如圖所示,下列結論正確的是( 。
A.當x<2時,y隨x增大而增大B.a-b+c<0
C.拋物線過點(-4,0)D.4a+b=0
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖, BD 是△ABC 的角平分線, AE⊥ BD ,垂足為 F ,若∠ABC=35°,∠ C=50°,則∠CDE 的度數(shù)為( )
A.35°B.40°C.45°D.50°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】直角三角形ABC中,,D是斜邊BC上一點,且,過點C作,交AD的延長線于點E,交AB延長線于點F.
求證:;
若,,過點B作于點G,連接依題意補全圖形,并求四邊形ABGD的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】給出如下定義:對于⊙O的弦MN和⊙O外一點P(M,O,N三點不共線,且點P,O在直線MN的異側),當∠MPN+∠MON=180°時,則稱點P是線段MN關于點O的關聯(lián)點.圖1是點P為線段MN關于點O的關聯(lián)點的示意圖.
在平面直角坐標系xOy中,⊙O的半徑為1.
(1)如圖2,已知M(,),N(,﹣),在A(1,0),B(1,1),C(,0)三點中,是線段MN關于點O的關聯(lián)點的是 ;
(2)如圖3,M(0,1),N(,﹣),點D是線段MN關于點O的關聯(lián)點.
①∠MDN的大小為 ;
②在第一象限內有一點E(m,m),點E是線段MN關于點O的關聯(lián)點,判斷△MNE的形狀,并直接寫出點E的坐標;
③點F在直線y=﹣x+2上,當∠MFN≥∠MDN時,求點F的橫坐標x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在四邊形ABCD中,∠BAD=∠BDC=90°,AB=AD,∠DCB=60°,CD=8.
(1)若P是BD上一點,且PA=CD,求∠PAB的度數(shù).
(2)①將圖1中的△ABD繞點B順時針旋轉30°,點D落在邊BC上的E處,AE交BD于點O,連接DE,如圖2,求證:DE2=DODB;
②將圖1中△ABD繞點B旋轉α得到△A'BD'(A與A',D與D'是對應點),若CD'=CD,則cosα的值為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某地農產品專賣店收購了一種非常受歡迎的土特產,該店以元/千克收購了這種土特產千克,若立即銷往外地,每千克可以獲利元.根據(jù)市場調查發(fā)現(xiàn),該種土特產的銷售單價每天上漲元/千克,為了獲得更大利潤,該店決定先貯藏一段時間后再出售.根據(jù)以往經驗,這批土特產的貯藏時間不宜超過天,在貯藏過程中平均每天損耗千克.
(1)若商家將這批土特產貯藏天后一次性出售,請完成下列表格:
每千克土特產售價(單位:元) | 可供出售的土特產質量(單位:克) | |
現(xiàn)在出售 |
| |
天后出售 |
|
|
(2)將這批土特產貯藏多少天后一次性出售最終可獲得總利潤元?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com