(2009•甌海區(qū)一模)如圖,拋物線y=ax2+bx+c交坐標軸于點A(-1,0)、B(3,0)、C(0,-3).
(1)求此拋物線函數(shù)解析式及頂點M的坐標;
(2)若直線CM與x軸交于點D,E是C關于此拋物線對稱軸的對稱點,試判斷四邊形ADCE的形狀并說明理由;
(3)若P是該拋物線上異于A、B兩點的一個動點,連接BP交y軸正半軸于點N,是否存在點P使△AOC與△BON相似?若存在請直接寫出點P的坐標,若不存在請說明理由.
【答案】分析:(1)將A、B、C三點坐標代入解方程組可得a,b,c的值和拋物線解析式,用頂點坐標公式求頂點坐標;(2)已知點C(0,-3),M(1,-4),根據(jù)“兩點法”可求直線CM函數(shù)解析式及D點坐標,∵E是C關于此拋物線對稱軸的對稱點,∴點E(2,-3),這樣就已知A,D,C,E四點坐標,只要判斷線段CE、AD平行且相等即可;
(3)設N(0,n),n>0,△AOC與△BON都是直角三角形要求相似,存在兩種對應關系:△AOC∽△BON,△AOC∽△NOB,根據(jù)相似比可得N點坐標,再求直線BN解析式與拋物線解析式聯(lián)立可求P點坐標.
解答:解:
(1)把點A(-1,0)、B(3,0)、C(0,-3)代入拋物線y=ax2+bx+c得:

解得:
∴拋物線函數(shù)解析式為y=x2-2x-3(3分)
頂點M的坐標為(1,-4)(4分)

(2)∵點C(0,-3),M(1,-4)
∴直線CM函數(shù)解析式為y=-x-3
∴直線CM與x軸交于點D(-3,0),(6分)
∵E是C關于此拋物線對稱軸的對稱點,
∴點E(2,-3)
∴CE=AD=2,
又∵CE∥AD
∴四邊形ADCE是平行四邊形.(8分)

(3)存在點P使△AOC與△BON相似,P1,),P2(-4,21).(12分)
點評:本題考查了拋物線解析式及頂點坐標的求法,平行四邊形的判斷,尋找三角形相似的條件等知識,充分體現(xiàn)形數(shù)結合的數(shù)學思想.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2009年浙江省溫州市甌海區(qū)中考數(shù)學一模試卷(解析版) 題型:選擇題

(2009•甌海區(qū)一模)正比例函數(shù)y=(n+1)x圖象經過點(2,4),則n的值是( )
A.-3
B.
C.3
D.1

查看答案和解析>>

科目:初中數(shù)學 來源:2009年浙江省溫州市平陽縣實驗中學二模試卷(解析版) 題型:選擇題

(2009•甌海區(qū)一模)拋物線y=(x-3)2+2的對稱軸是( )
A.直線x=-3
B.直線x=-2
C.直線x=2
D.直線x=3

查看答案和解析>>

科目:初中數(shù)學 來源:2009年浙江省溫州市甌海區(qū)中考數(shù)學一模試卷(解析版) 題型:解答題

(2009•甌海區(qū)一模)如圖,農民張大伯為了致富奔小康,大力發(fā)展家庭養(yǎng)殖業(yè),他準備用40米長的木欄圍一個矩形的雞圈.為了節(jié)約材料,同時要使矩形的面積最大,他利用了自己家房屋一面,準備設計如圖所示的一個矩形的養(yǎng)雞圈.設養(yǎng)雞圈的寬為x米,面積為y平方米.
(1)求y與x的函數(shù)關系式;
(2)怎樣圍,使得圍成的養(yǎng)雞圈面積最大,最大面積是多少?

查看答案和解析>>

科目:初中數(shù)學 來源:2009年浙江省溫州市甌海區(qū)中考數(shù)學一模試卷(解析版) 題型:解答題

(2009•甌海區(qū)一模)(1)計算:
(2)解方程:x2-2x=4.

查看答案和解析>>

同步練習冊答案