如圖所示,直線y=x+1與y軸相交于點(diǎn)A1,以O(shè)A1為邊作正方形OA1B1C1,記作第一個正方形;然后延長C1B1與直線y=x+1相交于點(diǎn)A2,再以C1A2為邊作正方形C1A2B2C2,記作第二個正方形;同樣延長C2B2與直線y=x+1相交于點(diǎn)A3,再以C2A3為邊作正方形C2A3B3C3,記作第三個正方形;…,依此類推,則第n個正方形的邊長為   
【答案】分析:解題的關(guān)鍵是求出第一個正方體的邊長,然后依次計算n=1,n=2…總結(jié)出規(guī)律.
解答:解:根據(jù)題意不難得出第一個正方體的邊長=1,
那么:n=1時,第1個正方形的邊長為:1=2
n=2時,第2個正方形的邊長為:2=21
n=3時,第3個正方形的邊長為:4=22

第n個正方形的邊長為:2n-1
點(diǎn)評:解決這類問題首先要從簡單圖形入手,抓住隨著“編號”或“序號”增加時,后一個圖形與前一個圖形相比,在數(shù)量上增加(或倍數(shù))情況的變化,找出數(shù)量上的變化規(guī)律,從而推出一般性的結(jié)論.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

3、如圖所示,直線AB,CD相交于O,所形成的∠1,∠2,∠3,∠4中,下列分類不同于其它三個的( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示:直線MN⊥RS于點(diǎn)O,點(diǎn)B在射線OS上,OB=2,點(diǎn)C在射線ON上,OC=2,點(diǎn)E是射線OM上一動點(diǎn),連接EB,過O作OP⊥EB于P,連接CP,過P作PF⊥PC交射線OS于F.

(1)求證:△POC∽△PBF.
(2)當(dāng)OE=1,OE=2時,BF的長分別為多少?當(dāng)OE=n時,BF=
4
n
4
n

(3)當(dāng)OE=1時,S△EBF=S1;OE=2時,S△EBF=S2;…,OE=n時,S△EBF=Sn.則S1+S2+…+Sn=
2n
2n
.(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,直線a、b被直線c所截,現(xiàn)給出下列四種條件:①∠2=∠6;②∠2=∠8;③∠1+∠4=180°;④∠3=∠8,其中能判斷是a∥b的條件的序號是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖所示,直線AB∥CD,CO⊥OD于O點(diǎn),并且∠1=40度.則∠D的度數(shù)是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

將一張矩形紙板沿對角線剪開得到兩個三角形,△ABC與△DEF,∠B=∠E=90°,如圖①所示.
(1)將△ABC與△DEF按如圖②方式擺放,使點(diǎn)B與E重合,點(diǎn)C、B、E、F在同一條直線上,邊AB與DE重合,連接CD、FA,并延長FA交CD于G.試證:FA⊥CD
(2)在(1)所述基礎(chǔ)上,將紙板△ACB沿直線CF向右平移,并剪去ED右側(cè)部分,此時CA與ED的交點(diǎn)為A1,連接CD、FA1,并延長FA1交CD于G,如圖③所示,直線FA1和CD的位置關(guān)系是
 
(直接寫出)
(3)在(2)所述基礎(chǔ)上,將紙板△A1CE繞點(diǎn)E逆時針旋轉(zhuǎn)α度(0°<α<90°)至如圖④所示位置,連接CD、FA1,CD與FA1交于點(diǎn)G,試判斷FA1與CD的位置關(guān)系?并說明理由.
精英家教網(wǎng)

查看答案和解析>>

同步練習(xí)冊答案