精英家教網 > 初中數學 > 題目詳情

【題目】如圖,我國的一艘海監(jiān)船在釣魚島A附近沿正東方向航行,船在B點時測得釣魚島A在船的北偏東60°方向,船以50海里/時的速度繼續(xù)航行2小時后到達C點,此時釣魚島A在船的北偏東30°方向.請問船繼續(xù)航行多少海里與釣魚島A的距離最近?

【答案】50海里

【解析】

試題過點A作ADBC于D,則垂線段AD的長度為與釣魚島A最近的距離,線段CD的長度即為所求.先由方位角的定義得出ABC=30°,ACD=60°,由三角形外角的性質得出BAC=30°,則CA=CB=100海里,然后解直角ADC,得出CD=AC=50海里。 

解:過點A作ADBC于D,

根據題意得,ABC=30°,ACD=60°,

∴∠BAC=ACD﹣ABC=30°。CA=CB。

CB=50×2=100(海里),CA=100(海里)。

在RtADC中,ACD=60°,CD=AC=×100=50(海里)。

故船繼續(xù)航行50海里與釣魚島A的距離最近。

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】在平面直角坐標系中,點P的坐標為(0,5),以P為圓心的圓與x軸相切,P的弦ABB點在A點右側)垂直于y軸,且AB=8,反比例函數k≠0)經過點B,則k=______

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】2018129日諸暨迎來首屆馬拉松盛典——西施馬拉松。我們一起用諸暨精神見證了諸暨奇跡”!馬拉松期間為了緩解市區(qū)內一些主要路段交通擁擠的現狀,市交警隊在一些主要路口設立了交通路況顯示牌(如圖).已知立桿AB高度是3m,從側面D點測得顯示牌頂端C點和底端B點的仰角分別是60°45°.求路況顯示牌BC的高度.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°, AD∠BAC的平分線,OAB上一點, OA為半徑的⊙O經過點D

1)求證:BC⊙O切線;

2)若BD=5,DC=3,求AC的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,從熱氣球C處測得地面A、B兩點的俯角分別為45°、30°,如果此時熱氣球C處離地面的高度CD為100米,且點A、D、B在同一直線上,求AB兩點間的距離(結果保留根號)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,梯形ABCD中,ADBC,D=90°,BC=CD=12,ABE=45°,點EDC上,AE,BC的延長線相交于點F,若AE=10,則SADE+SCEF的值是______ .

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】課本中有一道作業(yè)題:有一塊三角形余料ABC,它的邊BC=120mm,高AD=80mm.要把它加工成正方形零件,使正方形的一邊在BC上,其余兩個頂點分別在AB,AC上.

(1)加工成的正方形零件的邊長是多少mm?

(2)如果原題中要加工的零件是一個矩形,且此矩形是由兩個并排放置的正方形所組成,如圖1,此時,這個矩形零件的兩條邊長又分別為多少?請你計算.

(3)如果原題中所要加工的零件只是一個矩形,如圖2,這樣,此矩形零件的兩條邊長就不能確定,但這個矩形面積有最大值,求達到這個最大值時矩形零件的兩條邊長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,AB⊙O 的直徑,CD⊙O的一條弦,且CD⊥AB于點E

1)求證:∠BCO=∠D;

2)若CD=,AE=2,求⊙O的半徑.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】為了研究某藥品的療效,現選取若干名志愿者進行臨床試驗.所有志愿者的舒張壓數據(單位:kPa)的分組區(qū)間為[12,13),[13,14),[14,15),[15,16),[16,17],將其按從左到右的順序分別編號為第一組、第二組、、第五組.如圖是根據試驗數據制成的頻率分布直方圖.

(1)若第一組接受治療的志愿者有12人,則第三組接受治療的志愿者有多少人?

(2)若接受治療的志愿者共有50人,規(guī)定舒張壓在14kpa以上的志愿者接受進一步的臨床試驗,若從三組志愿者中按比例分配20張床位,則舒張壓數據在[14,15)的志愿者總共可以得到多少張床位?

查看答案和解析>>

同步練習冊答案