【題目】如圖,我國的一艘海監(jiān)船在釣魚島A附近沿正東方向航行,船在B點時測得釣魚島A在船的北偏東60°方向,船以50海里/時的速度繼續(xù)航行2小時后到達C點,此時釣魚島A在船的北偏東30°方向.請問船繼續(xù)航行多少海里與釣魚島A的距離最近?
【答案】50海里
【解析】
試題過點A作AD⊥BC于D,則垂線段AD的長度為與釣魚島A最近的距離,線段CD的長度即為所求.先由方位角的定義得出∠ABC=30°,∠ACD=60°,由三角形外角的性質得出∠BAC=30°,則CA=CB=100海里,然后解直角△ADC,得出CD=AC=50海里。
解:過點A作AD⊥BC于D,
根據題意得,∠ABC=30°,∠ACD=60°,
∴∠BAC=∠ACD﹣∠ABC=30°。∴CA=CB。
∵CB=50×2=100(海里),∴CA=100(海里)。
在Rt△ADC中,∠ACD=60°,∴CD=AC=×100=50(海里)。
故船繼續(xù)航行50海里與釣魚島A的距離最近。
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,點P的坐標為(0,﹣5),以P為圓心的圓與x軸相切,⊙P的弦AB(B點在A點右側)垂直于y軸,且AB=8,反比例函數(k≠0)經過點B,則k=______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】2018年12月9日諸暨迎來首屆馬拉松盛典——西施馬拉松。我們一起用“諸暨精神”見證了“諸暨奇跡”!馬拉松期間為了緩解市區(qū)內一些主要路段交通擁擠的現狀,市交警隊在一些主要路口設立了交通路況顯示牌(如圖).已知立桿AB高度是3m,從側面D點測得顯示牌頂端C點和底端B點的仰角分別是60°和45°.求路況顯示牌BC的高度.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°, AD是∠BAC的平分線,O是AB上一點, 以OA為半徑的⊙O經過點D.
(1)求證:BC是⊙O切線;
(2)若BD=5,DC=3,求AC的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,從熱氣球C處測得地面A、B兩點的俯角分別為45°、30°,如果此時熱氣球C處離地面的高度CD為100米,且點A、D、B在同一直線上,求AB兩點間的距離(結果保留根號)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,梯形ABCD中,AD∥BC,∠D=90°,BC=CD=12,∠ABE=45°,點E在DC上,AE,BC的延長線相交于點F,若AE=10,則S△ADE+S△CEF的值是______ .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】課本中有一道作業(yè)題:有一塊三角形余料ABC,它的邊BC=120mm,高AD=80mm.要把它加工成正方形零件,使正方形的一邊在BC上,其余兩個頂點分別在AB,AC上.
(1)加工成的正方形零件的邊長是多少mm?
(2)如果原題中要加工的零件是一個矩形,且此矩形是由兩個并排放置的正方形所組成,如圖1,此時,這個矩形零件的兩條邊長又分別為多少?請你計算.
(3)如果原題中所要加工的零件只是一個矩形,如圖2,這樣,此矩形零件的兩條邊長就不能確定,但這個矩形面積有最大值,求達到這個最大值時矩形零件的兩條邊長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了研究某藥品的療效,現選取若干名志愿者進行臨床試驗.所有志愿者的舒張壓數據(單位:kPa)的分組區(qū)間為[12,13),[13,14),[14,15),[15,16),[16,17],將其按從左到右的順序分別編號為第一組、第二組、…、第五組.如圖是根據試驗數據制成的頻率分布直方圖.
(1)若第一組接受治療的志愿者有12人,則第三組接受治療的志愿者有多少人?
(2)若接受治療的志愿者共有50人,規(guī)定舒張壓在14kpa以上的志愿者接受進一步的臨床試驗,若從三組志愿者中按比例分配20張床位,則舒張壓數據在[14,15)的志愿者總共可以得到多少張床位?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com