如圖,二次函數(shù)的圖象與軸交于B、C兩點(diǎn)(點(diǎn)B在點(diǎn)C的左側(cè)),一次函數(shù)的圖象經(jīng)過(guò)點(diǎn)B和二次函數(shù)圖象上另一點(diǎn)A. 點(diǎn)A的坐標(biāo)(4 ,3),.

(1)求二次函數(shù)和一次函數(shù)解析式;
(2)若點(diǎn)P在第四象限內(nèi),求面積S的最大值并求出此時(shí)點(diǎn)P的坐標(biāo);
(3)若點(diǎn)M在直線AB上,且與點(diǎn)A的距離是到軸距離的倍,求點(diǎn)M的坐標(biāo).
(1), (2),  (3)

試題分析:(1)由條件得:B(-2,0)     
拋物線:經(jīng)過(guò)A(4,3)、B(-2,0) 直線:經(jīng)過(guò)A(4,3)、B(-2,0)
                          
                ∴  
(2)過(guò)P作軸,交AB于.
設(shè),則

       

∴當(dāng)時(shí),
,       
(3)設(shè),A(4,3)
∴點(diǎn)M到x軸的距離=
∴由條件得:


          
點(diǎn)評(píng):本題考查二次函數(shù)、一次函數(shù),要求考生掌握用待定系數(shù)法求函數(shù)的解析式,掌握二次函數(shù)的性質(zhì),會(huì)用配方法求其最值
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知二次函數(shù) (a、m為常數(shù),且a¹0)。
(1)求證:不論a與m為何值,該函數(shù)的圖像與x軸總有兩個(gè)公共點(diǎn);
(2)設(shè)該函數(shù)的圖像的頂點(diǎn)為C,與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)D。
①當(dāng)△ABC的面積等于1時(shí),求a的值:
②當(dāng)△ABC的面積與△ABD的面積相等時(shí),求m的值。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某中學(xué)課外活動(dòng)小組準(zhǔn)備圍建一個(gè)矩形生物苗圃園,其中一邊靠墻,另外三邊用長(zhǎng)為50米的籬笆圍成。已知墻長(zhǎng)為26米(如圖所示),設(shè)這個(gè)苗圃園平行于墻的一邊的長(zhǎng)為米。(1)若垂直于墻的一邊長(zhǎng)為米,直接寫出的函數(shù)關(guān)系式及其自變量的取值范圍;(2)當(dāng)為多少米時(shí),這個(gè)苗圃園的面積最大,并求出這個(gè)最大值;(3)當(dāng)這個(gè)苗圃園的面積不小于300平方米時(shí),試結(jié)合函數(shù)圖象,求出的取值范圍。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知拋物線y=x2+bx+c與坐標(biāo)軸交于A、B、C三點(diǎn), A點(diǎn)的坐標(biāo)為(-1,0),過(guò)點(diǎn)C的直線y=x-3與x軸交于點(diǎn)Q,點(diǎn)P是線段BC上的一個(gè)動(dòng)點(diǎn),過(guò)P作PH⊥OB于點(diǎn)H.若PB=5t,且0<t<1.

(1)填空:點(diǎn)C的坐標(biāo)是     ,b=   ,c=    ;
(2)求線段QH的長(zhǎng)(用含t的式子表示);
(3)依點(diǎn)P的變化,是否存在t的值,使以P、H、Q為頂點(diǎn)的三角形與△COQ相似?若存在,求出所有t的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

關(guān)于二次函數(shù)y=2x2+3,下列說(shuō)法中正確的是                ( )
A.它的開(kāi)口方向是向下B.當(dāng)x<-1時(shí),y隨x的增大而減小
C.它的頂點(diǎn)坐標(biāo)是(2,3)D.當(dāng)x=0時(shí),y有最大值是3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,拋物線y=-x2+mx+n與x軸分別交于點(diǎn)A(4,0),B(-2,0),與y軸交于點(diǎn)C.

(1)求該拋物線的解析式;                                 
(2)M為第一象限內(nèi)拋物線上一動(dòng)點(diǎn),點(diǎn)M在何處時(shí),△ACM的面積最大;
(3)在拋物線的對(duì)稱軸上是否存在這樣的點(diǎn)P,使得△PAC為直角三角形?若存在,請(qǐng)求出所有可能點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,拋物線與直線AB交于點(diǎn)A(-1,0),B(4,).點(diǎn)D是拋物線A,B兩點(diǎn)間部分上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)A,B重合),直線CD與y軸平行,交直線AB于點(diǎn)C,連接AD,BD.

(1)求拋物線的解析式;
(2)設(shè)點(diǎn)D的橫坐標(biāo)為m,則用m的代數(shù)式表示線段DC的長(zhǎng);
(3)在(2)的條件下,若△ADB的面積為S,求S關(guān)于m的函數(shù)關(guān)系式,并求出當(dāng)S取最大值時(shí)的點(diǎn)C的坐標(biāo);
(4)當(dāng)點(diǎn)D為拋物線的頂點(diǎn)時(shí),若點(diǎn)P是拋物線上的動(dòng)點(diǎn),點(diǎn)Q是直線AB上的動(dòng)點(diǎn),判斷有幾個(gè)位置能使以點(diǎn)P,Q,C,D為頂點(diǎn)的四邊形為平行四邊形,直接寫出相應(yīng)的點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

黃岡市某高新企業(yè)制定工齡工資標(biāo)準(zhǔn)時(shí)充分考慮員工對(duì)企業(yè)發(fā)展的貢獻(xiàn),同時(shí)提高員工的積極性、控制員工的流動(dòng)率,對(duì)具有中職以上學(xué)歷員工制定如下的工齡工資方案。
Ⅰ.工齡工資分為社會(huì)工齡工資和企業(yè)工齡工資;
Ⅱ.社會(huì)工齡=參加本企業(yè)工作時(shí)年齡-18,
企業(yè)工齡=現(xiàn)年年齡-參加本企業(yè)工作時(shí)年齡。
Ⅲ.當(dāng)年工作時(shí)間計(jì)入當(dāng)年工齡
Ⅳ.社會(huì)工齡工資y1(元/月)與社會(huì)工齡x(年)之間的函數(shù)關(guān)系式如①圖所示,企業(yè)工齡工資y2(元/月)與企業(yè)工齡x(年)之間的函數(shù)關(guān)系如圖②所示.
請(qǐng)解決以下問(wèn)題

(1)求出y1、y2與工齡x之間的函數(shù)關(guān)系式;
(2)現(xiàn)年28歲的高級(jí)技工小張從18歲起一直在深圳實(shí)行同樣工齡工資制度的外地某企業(yè)工作,為了方便照顧老人與小孩,今年小張回鄉(xiāng)應(yīng)聘到該企業(yè),試計(jì)算第一年工齡工資每月下降多少元?
(3)已經(jīng)在該企業(yè)工作超過(guò)3年的李工程師今年48歲,試求出他的工資最高每月多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

函數(shù)圖象y=ax2+(a-3)x+1與x軸只有一個(gè)交點(diǎn)則a的值為     

查看答案和解析>>

同步練習(xí)冊(cè)答案