精英家教網 > 初中數學 > 題目詳情

一次函數y=x–3的圖象與軸,軸分別交于點.一個二次函數y=x2+bx+c的圖象經過點
(1)求點的坐標,并畫出一次函數y=x–3的圖象;
(2)求二次函數的解析式并求其圖像頂點C的坐標.
(3)求的面積。

(1)點A的坐標是(3,0),點B的坐標是(0,﹣3);
(2)二次函數的解析式是y=x2﹣2x﹣3,頂點C的坐標是(1,4);
(3)△ABC的面積是3.

解析試題分析:(1)分別把x=0、y=0代入求出y、x的值即可;
(2)把A、B的坐標代入二次函數的解析式得到方程組求出方程組的解即可,過A、B作直線即可;
(3)過C作CD⊥y軸于D,根據SABC=S梯形AODC﹣SAOB﹣SBDC,和數據線和梯形的面積公式求出即可.
試題解析:(1)y=x﹣3,當x=0時,y=﹣3,當y=0時,x=3,
∴A(3,0),B(0,﹣3).
直線y=k﹣3的圖象如圖所示:

答:點A的坐標是(3,0),點B的坐標是(0,﹣3);
(2)把A(3,0),B(0,﹣3)代入次函數y=x2+bx+c得:,
解得:,
∴y=x2﹣2x﹣3=(x﹣1)2﹣4,
∴C的坐標是(1,﹣4),
答:二次函數的解析式是y=x2﹣2x﹣3,頂點C的坐標是(1,4);
(3)過C作CD⊥y軸于D,如圖:

∵A(3,0),B(0,﹣3)C(1,﹣4),
∴OA=3,OB=3,CD=1,OD=4,BD=4﹣3=1,
∴SABC=S梯形AODC﹣SAOB﹣SBDC,
=×(CD+OA)×OD﹣×OA×OB﹣×DB×CD,
=×(1+3)×4﹣×3×3﹣×1×1=3,
答:△ABC的面積是3.
考點:二次函數綜合題.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:填空題

如圖,拋物線與y軸相交于點A,與過點A平行于x軸的直線相交于點B(點B在第一象限).拋物線的頂點C在直線OB上,對稱軸與x軸相交于點D.平移拋物線,使其經過點A、D,則平移后的拋物線的解析式為   

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

如圖,已知拋物線y=ax2+bx﹣4與x軸交于A(﹣2,0),B(8,0)兩點,與y軸交于點C,連接BC,以BC為一邊,作菱形BDEC,使其對角線在坐標軸上,點P是x軸上的一個動點,設點P的坐標為(m,0),過點P作x軸的垂線l交拋物線于點Q.
(1)求拋物線的解析式;
(2)將拋物線向上平移n個單位,使其頂點在菱形BDEC內(不含菱形的邊),求n的取值范圍;
(3)當點P在線段OB上運動時,直線l交BD于點M.試探究m為何值時,四邊形CQMD是平行四邊形,并說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

如圖,在直角坐標平面內,直線軸和軸分別交于A、B兩點,二次函數的圖象經過點A、B,且頂點為C.

(1)求這個二次函數的解析式;
(2)求的值;
(3)若P是這個二次函數圖象上位于軸下方的一點,且ABP的面積為10,求點P的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

如圖,二次函數(其中a,m是常數,且a>0,m>0)的圖象與x軸分別交于點A,B(點A位于點B的左側),與y軸交于點C(0,-3),點D在二次函數的圖象上,CD∥AB,連接AD.過點A作射線AE交二次函數的圖象于點E,AB平分∠DAE.
(1)用含m的代數式表示a;
(2))求證:為定值;
(3)設該二次函數圖象的頂點為F.探索:在x軸的負半軸上是否存在點G,連接CF,以線段GF、AD、AE的長度為三邊長的三角形是直角三角形?如果存在,只要找出一個滿足要求的點G即可,并用含m的代數式表示該點的橫坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

如圖,拋物線:y=ax2+bx+4與x軸交于點A(-2,0)和B(4,0)、與y軸交于點C.
(1)求拋物線的解析式;
(2)T是拋物線對稱軸上的一點,且△ACT是以AC為底的等腰三角形,求點T的坐標;
(3)點M、Q分別從點A、B以每秒1個單位長度的速度沿x軸同時出發(fā)相向而行.當點M原點時,點Q立刻掉頭并以每秒個單位長度的速度向點B方向移動,當點M到達拋物線的對稱軸時,兩點停止運動.過點M的直線l⊥軸,交AC或BC于點P.求點M的運動時間t(秒)與△APQ的面積S的函數關系式,并求出S的最大值.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

為深化“攜手節(jié)能低碳,共建碧水藍天”活動,發(fā)展“低碳經濟”,某單位進行技術革新,讓可再生資源重新利用.今年1月份,再生資源處理量為40噸,從今年1月1日起,該單位每月再生資源處理量每一個月將提高10噸.月處理成本(元)與月份之間的關系可近似地表示為:,每處理一噸再生資源得到的新產品的售價定為100元.若該單位每月再生資源處理量為y(噸),每月的利潤為w(元).
(1)分別求出y與x,w與x的函數關系式;
(2)在今年內該單位哪個月獲得利潤達到5800元?
(3)隨著人們環(huán)保意識的增加,該單位需求的可再生資源數量受限.今年三月的再生資源處理量比二月份減少了m%,該新產品的產量也隨之減少,其售價比二月份的售價增加了%.四月份,該單位得到國家科委的技術支持,使月處理成本比二月份的降低了%.如果該單位四月份在保持三月份的再生資源處理量和新產品售價的基礎上,其利潤比二月份的利潤減少了60元,求m的值.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

如圖1,邊長為4的正方形ABCD中,點E在AB邊上(不與點A,B重合),點F在BC邊上(不與點B,C重合).
第一次操作:將線段EF繞點F順時針旋轉,當點E落在正方形上時,記為點G;
第二次操作:將線段FG繞點G順時針旋轉,當點F落在正方形上時,記為點H;
依次操作下去…
(1)圖2中的△EFD是經過兩次操作后得到的,其形狀為   ,求此時線段EF的長;
(2)若經過三次操作可得到四邊形EFGH.
①請判斷四邊形EFGH的形狀為   ,此時AE與BF的數量關系是   ;
②以①中的結論為前提,設AE的長為x,四邊形EFGH的面積為y,求y與x的函數關系式及面積y的取值范圍;
(3)若經過多次操作可得到首尾順次相接的多邊形,其最大邊數是多少?它可能是正多邊形嗎?如果是,請直接寫出其邊長;如果不是,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

某賓館有30個房間供游客住宿,當每個房間的房價為每天120元時,房間會全部住滿.當每個房間每天的房價每增加10元時,就會有一個房間空閑.賓館需對游客居住的每個房間每天支出20元的各種費用.根據規(guī)定,每個房間每天的房價不得高于210元.設每個房間的房價增加x元(x為10的正整數倍).
(1)設一天訂住的房間數為y,直接寫出y與x的函數關系式及自變量x的取值范圍;
(2)設賓館一天的利潤為w元,求w與x的函數關系式;
(3)一天訂住多少個房間時,賓館的利潤最大?最大利潤是多少元?

查看答案和解析>>

同步練習冊答案