【題目】1)下面兩個立體圖形的名稱是:____________________

2)一個立體圖形的三視圖如下圖所示,這個立體圖形的名稱是__________

3)畫出下面立體圖形的主視圖.

【答案】1)四棱錐,五棱柱;(2)長方體;(3)詳見解析

【解析】

1)根據(jù)棱柱和棱錐的概念進行判斷;

2)由主視圖和左視圖確定是柱體,再由俯視圖確定具體形狀;

3)從正面看有3列,每列小正方形的數(shù)目分別為2,1,2,依此畫出圖形即可.

解:(1)第一個圖形是椎體,四個側面,底面為四邊形,即為四棱錐;

第二個圖形是柱體,五個側面,底面是五邊形,即為五棱柱;

2)因為主視圖和左視圖都是長方形,可以得到幾何體為柱體,因為俯視圖,即底面為四邊形,所以幾何體為長方體;

3)如圖所示:

該幾何體的主視圖為:

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖某同學將一個正方形紙片剪去一個寬為的長條后,再從剩下的長方形紙片上剪去一個寬為的長條.若兩次剪下的長條面積正好相等,則每一個長條的面積為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某網(wǎng)店銷售甲、乙兩種羽毛球,已知甲種羽毛球每筒的售價比乙種羽毛球多15元,王老師從該網(wǎng)店購買了2筒甲種羽毛球和3筒乙種羽毛球,共花費255元.

(1)該網(wǎng)店甲、乙兩種羽毛球每筒的售價各是多少元?

(2)根據(jù)消費者需求,該網(wǎng)店決定用不超過8780元購進甲、乙兩種羽毛球共200筒,且甲種羽毛球的數(shù)量大于乙種羽毛球數(shù)量的,已知甲種羽毛球每筒的進價為50元,乙種羽毛球每筒的進價為40元.

①若設購進甲種羽毛球m筒,則該網(wǎng)店有哪幾種進貨方案?

②若所購進羽毛球均可全部售出,請求出網(wǎng)店所獲利潤W(元)與甲種羽毛球進貨量m(筒)之間的函數(shù)關系式,并說明當m為何值時所獲利潤最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在平行四邊形ABCD中,AC為對角線,E是邊AD上一點,BE⊥AC交AC于點F,BE、CD的延長線交于點G,且∠ABE=∠CAD.

(1)求證:四邊形ABCD是矩形;

(2)如果AE=EG,求證:AC2=BCBG.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】綜合與實踐

問題情境:在數(shù)學課上,老師呈現(xiàn)了這樣一個問題:

如圖,已知,于點,于點,當時,求的度數(shù).

交流分享:勤思組的甲、乙、丙三位同學通過添加不同的輔助線均解決了問題,如下圖:

合作提升:完成下列問題:

1)請根據(jù)甲同學的圖形,完成下列推理過程:

解:過點

__________ ( )

( )

( )

___________=___________°

2)請仔細觀察乙、丙兩位同學所畫圖形,選擇其中一個,求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,在正方形ABCD中,,點E,F分別在BCCD上,,試探究面積的最小值。

下面是小麗的探究過程:

(1)延長EBG,使,連接AG,可以證明.請完成她的證明;

(2),,

①結合(1)中結論,通過計算得到x的部分對應值。請求出表格中a的值:(寫出解答過程)

x

0

1

2

3

4

5

6

7

8

9

10

10

8.18

6.67

5.38

4.29

3.33

a

1.76

1.11

0.53

0

②利用上表和(1)中的結論通過描點、連線可以分別畫出函數(shù)的圖像、請在圖②中完善她的畫圖;

根據(jù)以上探究,估計面積的最小值約為(結果估計到01)。

圖① 圖②

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列說法正確的個數(shù)有( )

①為了了解全國中學生的心理健康狀況,應采用普查的方式:②一個游戲中獎的既率是,則做100次這樣的游戲一定會中獎:③一組數(shù)據(jù)0 1, 2,1 1的眾數(shù)和中位數(shù)都是1;④若甲組數(shù)據(jù)的方差,乙組數(shù)據(jù)的方差, 則乙組數(shù)據(jù)比甲組數(shù)據(jù)穩(wěn)定:⑤如果1 2, 2, x的平均數(shù)和眾數(shù)相同,那么x的值等于3.

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線y=x2+bx+cx軸交于A、B兩點(A點在B點左側),與y軸交于點C(0,-3),對稱軸是直線x=1,直線BC與拋物線的對稱軸交于點D.

⑴求拋物線的函數(shù)表達式;

⑵求直線BC的函數(shù)表達式;

⑶點Ey軸上一動點,CE的垂直平分線交CE于點F,交拋物線于P、Q兩點,且點P在第三象限.①當線段PQ=AB時,求tanCED的值;②當以點C、D、E為頂點的三角形是直角三角形時,請直接寫出點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,CDAB,EFAB,垂足分別為D、F,∠1=∠2,

(1)試判斷DGBC的位置關系,并說明理由.

(2)若∠A70°,∠B40°,求∠AGD的度數(shù).

查看答案和解析>>

同步練習冊答案