【題目】已知A(-2,1)、B(n,-2)是一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象的兩個交點.

(1) 求此反比例函數(shù)和一次函數(shù)的解析式;

(2) 根據(jù)圖象直接寫出使一次函數(shù)的值大于反比例函數(shù)的值的x的取值范圍.

【答案】(1)y=- ; y= -x-1; (2)當(dāng) 0<x<1 x<-2 時,一次函數(shù)的值大于反比例函數(shù)的值.

【解析】

(1)把A(-2,1)代入反比例函數(shù)求出m值即可得反比例函數(shù)解析式,把B(n,-2)代入反比例函數(shù)解析式可得n值,把A、B兩點坐標(biāo)代入一次函數(shù)y=kx+b列方程組即可求出a、b的值,可得一次函數(shù)解析式;(2)觀察圖象得到當(dāng)0<x<1 x<-2 時,一次函數(shù)的圖象都在反比例函數(shù)圖象的上方,即一次函數(shù)的值大于反比例函數(shù)的值.

A(-2,1)代入y=m=1(-2)=-2,

反比例函數(shù)解析式為:y=,

B(n,-2)代入y=得:-2=

解得:n=1,

∴B點坐標(biāo)為(1,-2)

A、B兩點坐標(biāo)代入y=kx+b,

解得:k=-1,b=-1,

一次函數(shù)解析式為:y=-x-1,

(2)如圖觀察圖象得到當(dāng)0<x<1 x<-2 時,一次函數(shù)的圖象都在反比例函數(shù)圖象的上方,即一次函數(shù)的值大于反比例函數(shù)的值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖,在四邊形ABCD中,AB∥DC,EBC的中點,若AE∠BAD的平分線,求證:AD=DC+AB,

(2)如圖,在四邊形ABCD中,AB∥DC,F(xiàn)DC延長線上一點,連接AF,EBC的中點,若AE∠BAF的平分線,求證:AB=AF+CF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形網(wǎng)格中的ABC,若小方格邊長為1,格點ABC(頂點是網(wǎng)格線交點的三角形)的頂點A,C的坐標(biāo)分別為(﹣1,1),(0,﹣2),請你根據(jù)所學(xué)的知識.

(1)在如圖所示的網(wǎng)格平面內(nèi)作出平面直角坐標(biāo)系;

(2)作出ABC關(guān)于y軸對稱的三角形A1B1C1

(3)判斷ABC的形狀,并求出ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,AB=AC,點D是射線CB上的一動點(不與點B、C重合),以AD為一邊在AD的右側(cè)作△ADE,使AD=AE,∠DAE=∠BAC,連接CE

(1)如圖1,當(dāng)點D在線段CB上,且∠BAC=90°時,那么∠DCE= 度;

(2)設(shè)∠BAC= ,∠DCE=

① 如圖2,當(dāng)點D在線段CB上,∠BAC≠90°時,請你探究之間的數(shù)量關(guān)系,并證明你的結(jié)論;

② 如圖3,當(dāng)點D在線段CB的延長線上,∠BAC≠90°時,請將圖3補充完整,并直接寫出此時之間的數(shù)量關(guān)系(不需證明).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點E在正方形ABCD的邊CD上,把△ADE繞點A順時針旋轉(zhuǎn)90°至△ABF位置,如果AB= ,∠EAD=30°,那么點E與點F之間的距離等于

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小青和小白在一起玩數(shù)學(xué)游戲,他們約定:在一個不透明的布袋中有四個完全相同的小球,把它們分別標(biāo)號為1,2,3,4,小青隨機摸出一個小球記下數(shù)字后放回去,小白再隨機摸出一個小球記下數(shù)字.
(1)求小青和小白摸出小球標(biāo)號相同的概率;
(2)如果小青和小白按照上述方式繼續(xù)進(jìn)行游戲,并且把他們所摸出的兩個數(shù)分別看作點的橫坐標(biāo)和縱坐標(biāo),記作(小青,小白),當(dāng)點在直線y=x+1上時,小青勝;反之則小白勝,請判斷這個游戲?qū)﹄p方是否公平,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,△ABC中,BO,CO分別是∠ABC和∠ACB的平分線,過O點的直線分別交AB、AC于點D、E,且DEBC.若AB=6 cm,AC=8 cm,則△ADE的周長為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中已知點Aa,3),P在坐標(biāo)軸上,若使得AOP是等腰三角形的點P恰有6,則滿足條件的a值有( 。

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠MON=30°,點A1A2,A3,在射線ON上,點B1,B2,B3,在射線OM上,△A1B1A2,△A2B2A3,△A3B3A4,均為等邊三角形,若OA1=2,則△A5B5A6的邊長為( )

A. 8 B. 16 C. 24 D. 32

查看答案和解析>>

同步練習(xí)冊答案