某廠(chǎng)生產(chǎn)某種零件,該廠(chǎng)為鼓勵(lì)銷(xiāo)售商訂貨,提供了如下信息:
①每個(gè)零件的成本價(jià)為40元;
②若訂購(gòu)量在100個(gè)以?xún)?nèi),出廠(chǎng)價(jià)為60元;若訂購(gòu)量超過(guò)100個(gè)時(shí),每多訂1個(gè),訂購(gòu)的全部零件的出廠(chǎng)單價(jià)就降低0.02元;
③實(shí)際出廠(chǎng)單價(jià)不能低于51元.
根據(jù)以上信息,解答下列問(wèn)題:
(1)當(dāng)一次訂購(gòu)量為_(kāi)_____個(gè)時(shí),零件的實(shí)際出廠(chǎng)單價(jià)降為51元.
(2)設(shè)一次訂購(gòu)量為x個(gè)時(shí),零件的實(shí)際出廠(chǎng)單價(jià)為P元,寫(xiě)出P與x的函數(shù)表達(dá)式.
(3)當(dāng)銷(xiāo)售商一次訂購(gòu)500個(gè)零件時(shí),該廠(chǎng)獲得的利潤(rùn)是多少元?如果訂購(gòu)1000個(gè),利潤(rùn)又是多少元?(工廠(chǎng)售出一個(gè)零件的利潤(rùn)=實(shí)際出廠(chǎng)價(jià)-成本).
(1)設(shè)每個(gè)零件的實(shí)際出廠(chǎng)價(jià)恰好降為51元時(shí),一次訂購(gòu)量為x個(gè),則x=100+
60-51
0.02
=550
因此,當(dāng)一次訂購(gòu)量為550個(gè)時(shí),每個(gè)零件的實(shí)際出廠(chǎng)價(jià)恰好降為51元.
故答案為:550;

(2)當(dāng)0<x≤100時(shí),P=60
當(dāng)100<x<550時(shí),P=60-0.02(x-100)=62-
x
50

當(dāng)x≥550時(shí),P=51
所以P=
60(0<x≤100)
62-
x
50
(100<x<550)
51(550≤x)
;

(3)設(shè)銷(xiāo)售商的一次訂購(gòu)量為x個(gè)時(shí),工廠(chǎng)獲得的利潤(rùn)為L(zhǎng)元,
則L=(P-40)x=
20x(0<x≤100)
22x-
x2
50
(100<x<500)

當(dāng)x=500時(shí),L=22×500-
5002
50
=6000(元);當(dāng)x=1000時(shí),L=(51-40)×1000=11000(元),
因此,當(dāng)銷(xiāo)售商一次訂購(gòu)500個(gè)零件時(shí),該廠(chǎng)獲得的利潤(rùn)是6000元;如果訂購(gòu)1000個(gè),利潤(rùn)是11000元.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖是某河上一座古拱橋的截面圖,拱橋橋洞上沿是拋物線(xiàn)形狀,拋物線(xiàn)兩端點(diǎn)與水面的距離都是1m,拱橋的跨度為10m,橋洞與水面的最大距離是5m,橋洞兩側(cè)壁上各有一盞距離水面4m的景觀(guān)燈.若把拱橋的截面圖放在平面直角坐標(biāo)系中,則兩盞景觀(guān)燈之間的水平距離是( 。
A.3mB.4mC.5mD.6m

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖1,拋物線(xiàn)y=-
2
3
x2+bx+c與x軸相交于點(diǎn)A,C,與y軸相交于點(diǎn)B,連接AB,BC,點(diǎn)A的坐標(biāo)為(2,0),tan∠BAO=2,以線(xiàn)段BC為直徑作⊙M交AB與點(diǎn)D,過(guò)點(diǎn)B作直線(xiàn)lAC,與拋物線(xiàn)和⊙M的另一個(gè)交點(diǎn)分別是E,F(xiàn).
(1)求該拋物線(xiàn)的函數(shù)表達(dá)式;
(2)求點(diǎn)C的坐標(biāo)和線(xiàn)段EF的長(zhǎng);
(3)如圖2,連接CD并延長(zhǎng),交直線(xiàn)l于點(diǎn)N,點(diǎn)P,Q為射線(xiàn)NB上的兩個(gè)動(dòng)點(diǎn)(點(diǎn)P在點(diǎn)Q的右側(cè),且不與N重合),線(xiàn)段PQ與EF的長(zhǎng)度相等,連接DP,CQ,四邊形CDPQ的周長(zhǎng)是否有最小值?若有,請(qǐng)求出此時(shí)點(diǎn)P的坐標(biāo)并直接寫(xiě)出四邊形CDPQ周長(zhǎng)的最小值;若沒(méi)有,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

平面直角坐標(biāo)系xOy中,拋物線(xiàn)y=ax2-4ax+4a+c與x軸交于點(diǎn)A、點(diǎn)B,與y軸的正半軸交于點(diǎn)C,點(diǎn)A的坐標(biāo)為(1,0),OB=OC,拋物線(xiàn)的頂點(diǎn)為D.
(1)求此拋物線(xiàn)的解析式;
(2)若此拋物線(xiàn)的對(duì)稱(chēng)軸上的點(diǎn)P滿(mǎn)足∠APB=∠ACB,求點(diǎn)P的坐標(biāo);
(3)在(1)的條件下,對(duì)于實(shí)數(shù)c、d,我們可用min{c,d}表示c、d兩數(shù)中較小的數(shù),如min{3,-1}=-1.若關(guān)于x的函數(shù)y=min{ax2-4ax+4a+c,m(x-t)2-1(m>0)}的圖象關(guān)于直線(xiàn)x=3對(duì)稱(chēng),試討論其與動(dòng)直線(xiàn)y=
1
2
x+n
交點(diǎn)的個(gè)數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知二次函數(shù)y=x2-2x-1的圖象的頂點(diǎn)為A.二次函數(shù)y=ax2+bx的圖象與x軸交于原點(diǎn)O及另一點(diǎn)C,它的頂點(diǎn)B在函數(shù)y=x2-2x-1的圖象的對(duì)稱(chēng)軸上.
(1)求點(diǎn)A與點(diǎn)C的坐標(biāo);
(2)當(dāng)四邊形AOBC為菱形時(shí),求函數(shù)y=ax2+bx的關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,某學(xué)校校園內(nèi)有一塊形狀為直角梯形的空地ABCD,其中ABDC,∠B=90°,AB=100m,BC=80m,CD=40m,現(xiàn)計(jì)劃在上面建設(shè)一個(gè)面積為S的矩形綜合樓PMBN,其中點(diǎn)P在線(xiàn)段AD上,且PM的長(zhǎng)至少為36m.
(1)求邊AD的長(zhǎng);
(2)設(shè)PA=x(m),求S關(guān)于x的函數(shù)關(guān)系式,并指出自變量x的取值范圍;
(3)若S=3300m2,求PA的長(zhǎng).(精確到0.1m)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

有一種螃蟹,從海上捕獲后不放養(yǎng),最多只能存活兩天.如果放養(yǎng)在塘內(nèi),可以延長(zhǎng)存活時(shí)間,但每天也有一定數(shù)量的蟹死去.假設(shè)放養(yǎng)期內(nèi)蟹的個(gè)體質(zhì)量基本保持不變,現(xiàn)有一經(jīng)銷(xiāo)商,按市場(chǎng)價(jià)收購(gòu)這種活蟹1000kg放養(yǎng)在塘內(nèi),此時(shí)市場(chǎng)價(jià)為每千克30元,據(jù)測(cè)算,此后每千克活蟹的市場(chǎng)價(jià)每天可上升1元,但是,放養(yǎng)一天需支出各種費(fèi)用為400元,且平均每天還有10kg蟹死去,假定死蟹均于當(dāng)天全部銷(xiāo)售出,售價(jià)都是每千克20元.
(1)設(shè)x天后每千克活蟹的市場(chǎng)價(jià)為p元,寫(xiě)出p關(guān)于x的函數(shù)關(guān)系式;
(2)如果放養(yǎng)x天后將活蟹一次性出售,并記1000kg蟹的銷(xiāo)售總額為Q元,寫(xiě)出Q關(guān)于x的函數(shù)關(guān)系式;
(3)該經(jīng)銷(xiāo)商將這批蟹放養(yǎng)多少天后出售,可獲最大利潤(rùn)(利潤(rùn)=Q-收購(gòu)總額).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

有一條長(zhǎng)7.2米的木料,做成如圖所示的“日”字形的窗框,問(wèn)窗的高和寬各取多少米時(shí),這個(gè)窗的面積最大?(不考慮木料加工時(shí)損耗和中間木框所占的面積)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

用總長(zhǎng)為32m的籬笆墻圍成一個(gè)扇形的花園.
(1)試寫(xiě)出扇形花園的面積y(m2)與半徑x(m)之間的函數(shù)關(guān)系式和自變量x的取值范圍;
(2)用描點(diǎn)法作出函數(shù)的圖象;
(3)當(dāng)扇形花園半徑為多少時(shí),花園面積最大?最大面積是多少?此時(shí)這個(gè)扇形的圓心角是多大(精確到0.1度)?
(4)請(qǐng)回答:如果同樣用32m的籬笆圍成一個(gè)面積最大的矩形花園,這個(gè)花園的面積是多少?對(duì)比上面的結(jié)論,你有什么發(fā)現(xiàn)?

查看答案和解析>>

同步練習(xí)冊(cè)答案