【題目】如圖,將△ABC繞點C順時針旋轉(zhuǎn)90°得到△EDC.若點A,D,E在同一條直線上,∠ACB=20°,則∠ADC的度數(shù)是( )
A. 55°B. 60°C. 65°D. 70°
【答案】C
【解析】
根據(jù)旋轉(zhuǎn)的性質(zhì)和三角形內(nèi)角和解答即可.
∵將△ABC繞點C順時針旋轉(zhuǎn)90°得到△EDC.
∴∠DCE=∠ACB=20°,∠BCD=∠ACE=90°,AC=CE,
∴∠ACD=90°-20°=70°,
∵點A,D,E在同一條直線上,
∴∠ADC+∠EDC=180°,
∵∠EDC+∠E+∠DCE=180°,
∴∠ADC=∠E+20°,
∵∠ACE=90°,AC=CE
∴∠DAC+∠E=90°,∠E=∠DAC=45°
在△ADC中,∠ADC+∠DAC+∠DCA=180°,
即45°+70°+∠ADC=180°,
解得:∠ADC=65°,
故選C.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“一帶一路”國際合作高峰論壇期間,我國同30多個國家簽署經(jīng)貿(mào)合作協(xié)議.某工廠準(zhǔn)備生產(chǎn)甲、乙兩種商品共6萬件銷往“一帶一路”沿線國家和地區(qū),已知2件甲種商品與3件乙種商品的銷售收入相同,3件甲種商品比2件乙種商品的銷售收入多1500元.
(1)甲種商品與乙種商品的銷售單價各多少元?
(2)若甲、乙兩種商品的銷售總收入不低于4200萬元,則至少銷管甲種商品多少萬件?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,ABCD是一張邊長為4cm的正方形紙片,E,F分別為AB,CD的中點,沿過點D的折痕將A 角翻折,使得點A落在EF上的點A′處,折痕交AE于點G,則EG=_________cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為1個單位長度的小正方形組成的網(wǎng)格中,給出了格點△ABC(三角形頂點是網(wǎng)格線的交點)和△A1B1C1,且△ABC與△A1B1C1,成中心對稱.
(1)畫出△ABC和△A1B1C1的對稱中心;
(2)將△A1B1C1沿直線方向向上平移6格,得到△A2B2C2,畫出△A2B2C2;
(3)將△A2B2C2繞點C2順時針方向旋轉(zhuǎn)90°,得到△A3B3C3,畫出△A3B3C3.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明租用共享單車從家出發(fā),勻速騎行到相距米的圖書館還書.小明出發(fā)的同時,他的爸爸以每分鐘米的速度從圖書館沿同一條道路步行回家,小明在圖書館停留了分鐘后沿原路按原速返回.設(shè)他們出發(fā)后經(jīng)過(分)時,小明與家之間的距離為(米),小明爸爸與家之間的距離為(米),圖中折線、線段分別表示、與之間的函數(shù)關(guān)系的圖象.小明從家出發(fā),經(jīng)過___分鐘在返回途中追上爸爸.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將矩形ABCD繞點C旋轉(zhuǎn)得到矩形FECG,點E在AD上,延長ED交FG于點H.
(1)求證:△EDC≌△HFE;
(2)連接BE、CH.
①四邊形BEHC是怎樣的特殊四邊形?證明你的結(jié)論.
②當(dāng)AB與BC的比值為 時,四邊形BEHC為菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在以為原點的平面直角坐標(biāo)系中,有不在坐標(biāo)軸上的兩個點、,設(shè)的坐標(biāo)為,點的坐標(biāo)
(1)若與坐標(biāo)軸平行,則 ;
(2)若、、滿足和,軸,垂足為,軸,垂足為.
①求四邊形的面積;
②連、、,若的面積大于而不大于,求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠BAC=100°,∠ABC=∠ACB,點D在直線BC上運動(不與點B、C重合),點E在射線AC上運動,且∠ADE=∠AED,設(shè)∠DAC=n.
(1)如圖(1),當(dāng)點D在邊BC上時,且n=36°,則∠BAD= _________,∠CDE= _________.
(2)如圖(2),當(dāng)點D運動到點B的左側(cè)時,其他條件不變,請猜想∠BAD和∠CDE的數(shù)量關(guān)系,并說明理由.
(3)當(dāng)點D運動到點C的右側(cè)時,其他條件不變,∠BAD和∠CDE還滿足(2)中的數(shù)量關(guān)系嗎?請畫出圖形,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形的頂點、分別在、軸的正半軸上,點在反比例函數(shù)的第一象限內(nèi)的圖像上,,,動點在軸的上方,且滿足.
(1)若點在這個反比例函數(shù)的圖像上,求點的坐標(biāo);
(2)連接、,求的最小值;
(3)若點是平面內(nèi)一點,使得以、、、為頂點的四邊形是菱形,則請你直接寫出滿足條件的所有點的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com