如圖,已知矩形OABC中,OA=2,AB=4,雙曲線(k>0)與矩形兩邊AB、BC分別交于E、F.
(1)若E是AB的中點(diǎn),求F點(diǎn)的坐標(biāo);
(2)若將△BEF沿直線EF對折,B點(diǎn)落在x軸上的D點(diǎn),作EG⊥OC,垂足為G,證明△EGD∽△DCF,并求k的值.
【答案】分析:(1)根據(jù)點(diǎn)E是AB中點(diǎn),可求出點(diǎn)E的坐標(biāo),將點(diǎn)E的坐標(biāo)代入反比例函數(shù)解析式可求出k的值,再由點(diǎn)F的橫坐標(biāo)為4,可求出點(diǎn)F的縱坐標(biāo),繼而得出答案;
(2)證明∠GED=∠CDF,然后利用兩角法可判斷△EGD∽△DCF,設(shè)點(diǎn)E坐標(biāo)為(,2),點(diǎn)F坐標(biāo)為(4,),即可得CF=,BF=DF=2-,在Rt△CDF中表示出CD,利用對應(yīng)邊成比例可求出k的值.
解答:解:(1)∵點(diǎn)E是AB的中點(diǎn),OA=2,AB=4,
∴點(diǎn)E的坐標(biāo)為(2,2),
將點(diǎn)E的坐標(biāo)代入y=,可得k=4,
即反比例函數(shù)解析式為:y=,
∵點(diǎn)F的橫坐標(biāo)為4,
∴點(diǎn)F的縱坐標(biāo)==1,
故點(diǎn)F的坐標(biāo)為(4,1);


(2)由折疊的性質(zhì)可得:BE=DE,BF=DF,∠B=∠EDF=90°,
∵∠CDF+∠EDG=90°,∠GED+∠EDG=90°,
∴∠CDF=∠GED,
又∵∠EGD=∠DCF=90°,
∴△EGD∽△DCF,
結(jié)合圖形可設(shè)點(diǎn)E坐標(biāo)為(,2),點(diǎn)F坐標(biāo)為(4,),
則CF=,BF=DF=2-,ED=BE=AB-AE=4-,
在Rt△CDF中,CD===,
=,即=,
=1,
解得:k=3.
點(diǎn)評:本題考查了反比例函數(shù)的綜合,解答本題的關(guān)鍵是利用點(diǎn)E的縱坐標(biāo),點(diǎn)F的橫坐標(biāo),用含k的式子表示出其他各點(diǎn)的坐標(biāo),注意掌握相似三角形的對應(yīng)邊成比例的性質(zhì),難度較大.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知:正△OAB的面積為4
3
,雙曲線y=
k
x
經(jīng)過點(diǎn)B,點(diǎn)P(m,n)(m>0)在雙曲線y=
k
x
上,PC⊥x軸于點(diǎn)C,PD⊥y軸于點(diǎn)D,設(shè)矩形OCPD與正△OAB不重疊部分的面積為S.
(1)求點(diǎn)B的坐標(biāo)及k的值;
(2)求m=1和m=3時(shí),S的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知OA⊥OB,OA=4,OB=3,以AB為邊作矩形ABCD,使AD=a,過點(diǎn)D作DE垂直O(jiān)A的延精英家教網(wǎng)長線交于點(diǎn)E.
(1)證明:△OAB∽△EDA;
(2)當(dāng)a為何值時(shí),△OAB與△EDA全等?請說明理由,并求出此時(shí)點(diǎn)C到OE的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(本題滿分10分)

如圖,已知OA⊥OB,OA=8,OB=6,以AB為邊作矩形ABCD,使AD=a,過點(diǎn)D作DE垂直O(jiān)A的延長線交于點(diǎn)E.

(1)求證:△OAB∽△EDA;                               

(2)當(dāng)a為何值時(shí),△OAB與△EDA全等?并求出此時(shí)點(diǎn)C到OE的距離.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011屆河北省唐山路南數(shù)學(xué)三模試卷 題型:解答題

(本題滿分10分)

如圖,已知OA⊥OB,OA=8,OB=6,以AB為邊作矩形ABCD,使AD=a,過點(diǎn)D作DE垂直O(jiān)A的延長線交于點(diǎn)E.
(1)求證:△OAB∽△EDA;                               
(2)當(dāng)a為何值時(shí),△OAB與△EDA全等?并求出此時(shí)點(diǎn)C到OE的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省啟東市九年級中考適應(yīng)性考試(一模)數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,已知OAOB,OA=4,OB=3,以AB為邊作矩形ABCD,使AD,過點(diǎn)DDE垂直OA的延長線且交于點(diǎn)E.(1)求證:△OAB∽△EDA

(2)當(dāng)為何值時(shí),△OAB與△EDA全等?請說明理由;并求出此時(shí)BD兩點(diǎn)的距離.

 

查看答案和解析>>

同步練習(xí)冊答案