【題目】如圖,已知反比例函數(shù)的圖象與直線都經(jīng)過點(diǎn),,且直線交軸于點(diǎn),交軸于點(diǎn),連接,.
(1)直接寫出,的值及直線的函數(shù)表達(dá)式;
(2)與的面積相等嗎?寫出你的判斷,并說明理由;
(3)若點(diǎn)是軸上一點(diǎn),當(dāng)的值最小時(shí),求點(diǎn)的坐標(biāo).
【答案】(1),,; (2)相等.理由見解析;(3).
【解析】
(1)利用待定系數(shù)法即可解決問題.
(2)利用三角形的面積公式求出三角形的面積即可判斷.
(3)如圖作點(diǎn)Q關(guān)于y軸的對(duì)稱點(diǎn)Q’,理解PQ’交y軸于M,參數(shù)MQ+MP的值最小.求出最小PQ’的解析式即可解決問題.
解:(1)∵反比例函數(shù)的圖象與直線都經(jīng)過點(diǎn),
∴,,,,
則有,解得,
∴直線的解析式為.
(2)相等.
理由:∵
∴當(dāng)時(shí),,即,當(dāng)時(shí),,即,
∴,
∴.
(3)如圖作點(diǎn)關(guān)于軸的對(duì)稱點(diǎn),理解交軸于,參數(shù)的值最小.
∵,
∴,
直線的解析式為,則有,6
解得,
∴直線的解析式為,
當(dāng)時(shí),,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),ABCD的邊AB在x軸上,頂點(diǎn)D在y軸的正半軸上,點(diǎn)C在第一象限.將△AOD沿y軸翻折,使點(diǎn)A落在x軸上的點(diǎn)E處,點(diǎn)B恰好為OE的中點(diǎn),DE與BC交于點(diǎn)F.若y=(k≠0)圖象經(jīng)過點(diǎn)C,且S△BEF=,則k的值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,點(diǎn)D,E分別在邊AC,AB上,BD與CE交于點(diǎn)O,給出下列四個(gè)條件:
①∠EBO=∠DCO;②BE=CD;③OB=OC;④OE=OD.
從上述四個(gè)條件中,選取兩個(gè)條件,不能判定△ABC是等腰三角形的是:( )
A. ①②B. ①③C. ③④D. ②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,以△ABC的邊AB為直徑作⊙O,點(diǎn)C在⊙O上,BD是⊙O的弦,∠A=∠CBD,過點(diǎn)C作CF⊥AB于點(diǎn)F,交BD于點(diǎn)G,過C作CE∥BD交AB的延長(zhǎng)線于點(diǎn)E.
(1)求證:CE是⊙O的切線;
(2)求證:CG=BG;
(3)若∠DBA=30°,CG=4,求BE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,拋物線過點(diǎn)軸上的和點(diǎn),交軸于點(diǎn),點(diǎn)該物上限一點(diǎn),且.
(1)拋物線的解析式為:____________;
(2)如圖2,過點(diǎn)作軸交直線于點(diǎn),求點(diǎn)在運(yùn)動(dòng)的過程中線段長(zhǎng)度的最大值;
(3)如圖3,若,在對(duì)稱軸左側(cè)的拋物線上是否存在點(diǎn),使?若存在,請(qǐng)求出點(diǎn)的坐標(biāo),若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一居民樓底部B與山腳P位于同一水平線上,小李在P處測(cè)得居民樓頂A的仰角為60°,然后他從P處沿坡角為45°的山坡向上走到C處,這時(shí)點(diǎn)C與點(diǎn)A恰好在同一水平線上,點(diǎn)A、B、P、C在同一平面內(nèi).
(1)若BP=10m,求居民樓AB的高度;(精確到0.1,≈1.732)
(2)若PC=24m,求C、A之間的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“五一”期間甲乙兩商場(chǎng)搞促銷活動(dòng),甲商場(chǎng)的方案是:在一個(gè)不透明的箱子里放4個(gè)完全相同的小球,球上分別標(biāo)“0元”“20元”“30元”“50元”,顧客每消費(fèi)滿300元就可從箱子里不放回地摸出2個(gè)球,根據(jù)兩個(gè)小球所標(biāo)金額之和可獲相應(yīng)價(jià)格的禮品;乙商場(chǎng)的方案是:在一個(gè)不透明的箱子里放2個(gè)完全相同的小球,球上分別標(biāo)“5元”“30元”,顧客每消費(fèi)滿100元,就可從箱子里有放回地摸出1個(gè)球,根據(jù)小球所標(biāo)金額可獲相應(yīng)價(jià)格的禮品.某顧客準(zhǔn)備消費(fèi)300元.
(1)請(qǐng)用畫樹狀圖或列表法,求出該顧客在甲商場(chǎng)獲得禮品的總價(jià)值不低于50元的概率;
(2)判斷該顧客去哪個(gè)商場(chǎng)消費(fèi)使獲得禮品的總價(jià)值不低于50元機(jī)會(huì)更大?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是半徑為4的的內(nèi)接三角形,連接,點(diǎn)分別是的中點(diǎn).
(1)試判斷四邊形的形狀,并說明理由;
(2)填空:①若,當(dāng)時(shí),四邊形的面積是__________;②若,當(dāng)的度數(shù)為__________時(shí),四邊形是正方形.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com