分析 (1)分兩種情形計(jì)算即可:①當(dāng)0<t≤5時(shí),DH=AD-AH;②當(dāng)5<t≤10時(shí),DH=AH-AD;
(2)由PD=PE,PE=PF,推出PE=PF=PD,進(jìn)而推出△EFD是直角三角形,推出∠EFD=90°,進(jìn)而推出DF⊥EF,由此即可證明DF∥AB;
(3)分三種情形進(jìn)行討論:①當(dāng)DH=DF時(shí),②當(dāng)FD=FH時(shí),③當(dāng)DH=DF時(shí),用t表示PM、DF,根據(jù)DF=2PM列出方程,即可求得t的值.
解答 解:(1)∵∠ACB=Rt∠,BC=6,AC=8,
∴AB=10,
∵DA=DC=4,PH=$\frac{3}{5}$t,AP=t,
∴AH=$\frac{4}{5}$t,
①當(dāng)0<t≤5時(shí),DH=AD-AH=4-$\frac{4}{5}$t,
②當(dāng)5<t≤10時(shí),DH=AH-AD=$\frac{4}{5}$t-4;
(2)證明:如圖,連接PF,
∵E、F關(guān)于AB對(duì)稱,
∴AB垂直平分EF,
∴PE=PF
∴∠PEF=∠PFE,
又∵PE=PD,
∴PF=PD,
∴∠PFD=∠PDF,
∵∠PEF+∠PFE+∠PFD+∠PDF=180°,
∴∠EFD=∠PFE+∠PFD=90°,
即DF⊥EF,
又∵AB⊥EF,
∴DF∥AB;
(3)∵DF∥AB,
∴∠A=∠FDA,∠AMN=∠C=∠DFN=∠PHA=90°,
∴△AMN∽△ACB∽△DFN,
∴BC:AC:AB=NM:AM:AN=NF:DF:DN=PH:AH:AP=3:4:5,
①如圖1中,當(dāng)DH=DF時(shí),
∵AP=t,
∴AH=$\frac{4}{5}$t,PH=$\frac{3}{5}$t,DH=DF=4-$\frac{4}{5}$,DN=$\frac{5}{4}$(4-$\frac{4}{5}$t)=5-t,AN=4-DN=t-1,AM=$\frac{4}{5}$(t-1),
∴PM=PA-AM=t-$\frac{4}{5}$(t-1)=$\frac{4}{5}$+$\frac{1}{5}$t,
∵PF=PD,PM∥DF,
∴EM=FM,
∴DF=2PM,
∴4-$\frac{4}{5}$t=2($\frac{4}{5}$+$\frac{1}{5}$t),
∴t=2.
②如圖2中,當(dāng)FD=FH時(shí),
∵DH=4-$\frac{4}{5}$t,
∴DF=FH=$\frac{5}{4}$•$\frac{1}{2}$DH=$\frac{5}{8}$(4-$\frac{4}{5}$t)=$\frac{5}{2}$-$\frac{1}{2}$t,DN=$\frac{5}{4}$DF=$\frac{25}{8}$-$\frac{5}{8}$t,
∴AN=4-$\frac{25}{8}$+$\frac{5}{8}$t=$\frac{7}{8}$+$\frac{5}{8}$t,PM=AP-AM=$\frac{3}{8}$t-$\frac{7}{8}$,
∵DF=2PM,
∴$\frac{5}{2}$-$\frac{1}{2}$t=2($\frac{3}{8}$t-$\frac{7}{8}$),
∴t=$\frac{17}{5}$.
③如圖3中,當(dāng)DH=DF時(shí),
∵DF=DH=4-$\frac{4}{5}$t,
∴DN=$\frac{5}{4}$DF=5-t,
∴AN=4+DN=9-t,AM=$\frac{4}{5}$AN=$\frac{36}{5}$-$\frac{4}{5}$t,
∴PM=AM-AP=$\frac{36}{5}$-$\frac{9}{5}$t,
∵DF=2PM,
∴4-$\frac{4}{5}$t=2($\frac{36}{5}$-$\frac{9}{5}$t),
∴t=$\frac{26}{7}$,
綜上所述,當(dāng)t=2s或$\frac{17}{5}$s或$\frac{26}{7}$s時(shí),△DFH是等腰三角形.
點(diǎn)評(píng) 本題屬于三角形綜合題,主要考查了相似三角形的判定和性質(zhì)、直角三角形的判定、等腰三角形的判定和性質(zhì)、三角形的中位線定理等知識(shí)的綜合應(yīng)用,解題的關(guān)鍵是學(xué)會(huì)用分類討論的思想思考問(wèn)題,學(xué)會(huì)用轉(zhuǎn)化的思想思考問(wèn)題,學(xué)會(huì)構(gòu)建方程解決問(wèn)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -2016 | B. | -$\frac{1}{2016}$ | C. | $\frac{1}{2016}$ | D. | 2016 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | 2a-1 | C. | 2a+1 | D. | 1-2a |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 75° | B. | 60° | C. | 45° | D. | 30° |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{{{({-3})}^2}}=3$ | B. | $\sqrt{3}×\sqrt{2}=\sqrt{6}$ | C. | $\sqrt{3}+\sqrt{2}=\sqrt{5}$ | D. | $\sqrt{6}÷\sqrt{3}=\sqrt{2}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | y1<y2 | B. | y1>y2 | C. | y1=y2 | D. | 不能確定 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com