精英家教網(wǎng)如圖,已知點(diǎn)A與點(diǎn)B的坐標(biāo)分別為(4,0),(0,2).
(1)求直線AB的解析式;
(2)過點(diǎn)C(2,0)的直線(與x軸不重合)與△AOB的另一邊相交于點(diǎn)P,若截得的三角形與△AOB全等,求點(diǎn)P的坐標(biāo).
分析:(1)設(shè)直線AB的解析式為y=kx+b,把已知坐標(biāo)代入求出解析式.
(2)依題意可得OP=OA,故易求P點(diǎn)坐標(biāo).
解答:解:(1)設(shè)直線AB的函數(shù)關(guān)系式為y=kx+b,
把A、B兩點(diǎn)的坐標(biāo)代入并解得k=-
1
2
,b=2,
所以直線AB的函數(shù)關(guān)系式為y=-
1
2
x+2;

(2)由題意知OP=OA=4,
所以P點(diǎn)坐標(biāo)為(0,4)或(0,-4).
點(diǎn)評:本題考查的是全等三角形的判定定理以及一次函數(shù)的綜合運(yùn)用,難度一般.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知P是正方形ABCD內(nèi)一點(diǎn),PA=1,PB=2,PC=3,以點(diǎn)B為旋轉(zhuǎn)中心,將△ABP沿順時(shí)針方向旋轉(zhuǎn),使點(diǎn)A與點(diǎn)C重合,這時(shí)P點(diǎn)旋轉(zhuǎn)到M點(diǎn)。

【小題1】(1)請畫出旋轉(zhuǎn)后的圖形,并說明此時(shí)△ABP以點(diǎn)B為旋轉(zhuǎn)中心旋轉(zhuǎn)了多少度?
【小題2】(2)求出PM的長度;
【小題3】(3)請你猜想△PMC的形狀,并說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:新課標(biāo)九年級數(shù)學(xué)競賽培訓(xùn)第09講:坐標(biāo)平面上的直線(解析版) 題型:解答題

如圖,已知點(diǎn)A與點(diǎn)B的坐標(biāo)分別為(4,0),(0,2).
(1)求直線AB的解析式;
(2)過點(diǎn)C(2,0)的直線(與x軸不重合)與△AOB的另一邊相交于點(diǎn)P,若截得的三角形與△AOB全等,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年全國中考數(shù)學(xué)試題匯編《一次函數(shù)》(04)(解析版) 題型:解答題

(2002•太原)如圖,已知點(diǎn)A與點(diǎn)B的坐標(biāo)分別為(4,0),(0,2).
(1)求直線AB的解析式;
(2)過點(diǎn)C(2,0)的直線(與x軸不重合)與△AOB的另一邊相交于點(diǎn)P,若截得的三角形與△AOB全等,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年山西省太原市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2002•太原)如圖,已知點(diǎn)A與點(diǎn)B的坐標(biāo)分別為(4,0),(0,2).
(1)求直線AB的解析式;
(2)過點(diǎn)C(2,0)的直線(與x軸不重合)與△AOB的另一邊相交于點(diǎn)P,若截得的三角形與△AOB全等,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案