如圖,已知:BC與CD重合,∠ABC=∠CDE=90°,△ABC≌△CDE,并且△CDE可由△ABC逆時(shí)針旋轉(zhuǎn)而得到.請(qǐng)你利用尺規(guī)作出旋轉(zhuǎn)中心O(保留作圖痕跡,不寫作法,注意最后用墨水筆加黑),并直接寫出旋轉(zhuǎn)角度是  


90°解:如圖所示:旋轉(zhuǎn)角度是90°.

故答案為:90°.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:


,則化簡(jiǎn)后為                                            【   】

A       B.    C.     D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


計(jì)算:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


x1,x2是關(guān)于x的一元二次方程x2﹣mx+m﹣2=0的兩個(gè)實(shí)數(shù)根,是否存在實(shí)數(shù)m使+=0成立?則正確的是結(jié)論是(  )

 

A.

m=0時(shí)成立

B.

m=2時(shí)成立

C.

m=0或2時(shí)成立

D.

不存在

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


如圖,直線MN與⊙O相切于點(diǎn)M,ME=EF且EF∥MN,則cos∠E=  

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


給定直線l:y=kx,拋物線C:y=ax2+bx+1.

(1)當(dāng)b=1時(shí),l與C相交于A,B兩點(diǎn),其中A為C的頂點(diǎn),B與A關(guān)于原點(diǎn)對(duì)稱,求a的值;

(2)若把直線l向上平移k2+1個(gè)單位長(zhǎng)度得到直線r,則無(wú)論非零實(shí)數(shù)k取何值,直線r與拋物線C都只有一個(gè)交點(diǎn).

①求此拋物線的解析式;

②若P是此拋物線上任一點(diǎn),過(guò)P作PQ∥y軸且與直線y=2交于Q點(diǎn),O為原點(diǎn).求證:OP=PQ.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


計(jì)算:_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


如圖1,拋物線的頂點(diǎn)為M,直線y=m與x軸平行,且與拋物線交于點(diǎn)A,B,若三角形AMB為等腰直角三角形,我們把拋物線上A、B兩點(diǎn)之間的部分與線段AB圍成的圖形稱為該拋物線對(duì)應(yīng)的準(zhǔn)蝶形,線段AB稱為碟寬,頂點(diǎn)M稱為碟頂,點(diǎn)M到線段AB的距離稱為碟高。

(1)       拋物線對(duì)應(yīng)的碟寬為_(kāi)_______;拋物線對(duì)應(yīng)的碟寬為_(kāi)_____;拋物線(a>0)對(duì)應(yīng)的碟寬為_(kāi)_______;拋物線對(duì)應(yīng)的碟寬_____;

(2)       若拋物線對(duì)應(yīng)的碟寬為6,且在x軸上,求a的值;

(3)       將拋物線的對(duì)應(yīng)準(zhǔn)蝶形記為Fn(n=1,2,3,…),定義F1,F(xiàn)2,…..Fn為相似準(zhǔn)蝶形,相應(yīng)的碟寬之比即為相似比。若Fn與Fn-1的相似比為,且Fn的碟頂是Fn-1的碟寬的中點(diǎn),現(xiàn)在將(2)中求得的拋物線記為y1,其對(duì)應(yīng)的準(zhǔn)蝶形記為F1.

①     求拋物線y2的表達(dá)式

② 若F1的碟高為h1,F2的碟高為h2,…Fn的碟高為hn,則hn=_______,Fn的碟寬右端點(diǎn)橫坐標(biāo)為_(kāi)______;F1,F(xiàn)2,…..Fn的碟寬右端點(diǎn)是否在一條直線上?若是,直接寫出改直線的表達(dá)式;若不是,請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


如圖,在ABCD中,以點(diǎn)A為圓心,AB的長(zhǎng)為半徑的圓恰好與CD相切于點(diǎn)C,交AD于點(diǎn)E,延長(zhǎng)BA與⊙A相交于點(diǎn)F.若的長(zhǎng)為,則圖中陰影部分的面積為    

查看答案和解析>>

同步練習(xí)冊(cè)答案