【題目】如圖,在△ABC中∠A=60°,BM⊥AC于點M,CN⊥AB于點N,P為BC邊的中點,連接PM,PN,則下列結(jié)論:①PM=PN;②;③△PMN為等邊三角形;④當(dāng)∠ABC=45°時,BN=PC.其中正確的個數(shù)是()
A. 1個 B. 2個 C. 3個 D. 4個
【答案】D
【解析】
試題①∵BM⊥AC于點M,CN⊥AB于點N,P為BC邊的中點,
∴PM=BC,PN=BC。∴PM=PN。正確。
②在△ABM與△ACN中,∵∠A=∠A,∠AMB=∠ANC=90°,
∴△ABM∽△ACN,∴。正確。
③∵∠A=60°,BM⊥AC于點M,CN⊥AB于點N,∴∠ABM=∠ACN=30°。
在△ABC中,∠BCN+∠CBM═180°﹣60°﹣30°×2=60°,
∵點P是BC的中點,BM⊥AC,CN⊥AB,∴PM=PN=PB=PC。
∴∠BPN=2∠BCN,∠CPM=2∠CBM。∴∠BPN+∠CPM=2(∠BCN+∠CBM)=2×60°=120°。
∴∠MPN=60°。∴△PMN是等邊三角形。正確。
④當(dāng)∠ABC=45°時,∵CN⊥AB于點N,∴∠BNC=90°,∠BCN=45°。∴BN=CN。
∵P為BC邊的中點,∴PN⊥BC,△BPN為等腰直角三角形。
∴BN=PB=PC。正確。
綜上所述,正確的結(jié)論個數(shù)是4個。故選D。
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,A(0,1),B(4,2),C(2,0).
(1)將△ABC沿y軸翻折得到△A1B1C1,畫出△A1B1C1;
(2)將△ABC繞著點(﹣1,﹣1)旋轉(zhuǎn)180°得到△A2B2C2,畫出△A2B2C2;
(3)線段B2C2可以看成是線段B1C1繞著平面直角坐標(biāo)系中某一點逆時針旋轉(zhuǎn)得到,直接寫出旋轉(zhuǎn)中心的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中, 三個頂點坐標(biāo)分別為,,.
(1)請畫出關(guān)于軸對稱的圖形;
(2)將的三個頂點的橫坐標(biāo)與縱坐標(biāo)同時乘,得到對應(yīng)的點、、,請畫出 ;
(3)求與的面積比,即:=________(不寫解答過程,直接寫出結(jié)果).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2014山東淄博)如圖,四邊形ABCD中,AC⊥BD交BD于點E,點F,M分別是AB,BC的中點,BN平分∠ABE交AM于點N,AB=AC=BD,連接MF,NF.
(1)判斷△BMN的形狀,并證明你的結(jié)論;
(2)判斷△MFN與△BDC之間的關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場用2500元購進(jìn)A、B兩種新型節(jié)能臺燈共50盞,這兩種臺燈的進(jìn)價、標(biāo)價如下表所示.
類型 價格 | A型 | B型 |
進(jìn)價(元/盞) | 40 | 65 |
標(biāo)價(元/盞) | 60 | 100 |
(1)這兩種臺燈各購進(jìn)多少盞?
(2)在每種臺燈銷售利潤不變的情況下,若該商場計劃銷售這批臺燈的總利潤至少為1400元,問至少需購進(jìn)B種臺燈多少盞?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,O為坐標(biāo)原點,點B在x軸的正半軸上,四邊形OACB是平行四邊形,sin∠AOB=,反比例函數(shù)y=(k>0)在第一象限內(nèi)的圖象經(jīng)過點A,與BC交于點F.
(1)若OA=10,求反比例函數(shù)解析式;
(2)若點F為BC的中點,且△AOF的面積S=12,求OA的長和點C的坐標(biāo);
(3)在(2)中的條件下,過點F作EF∥OB,交OA于點E(如圖②),點P為直線EF上的一個動點,連接PA,PO.是否存在這樣的點P,使以P、O、A為頂點的三角形是直角三角形?若存在,請直接寫出所有點P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】經(jīng)過某十字路口的汽車,可能直行,也可能向左轉(zhuǎn)或向右轉(zhuǎn).如果這三種可能性大小相同,現(xiàn)有兩輛汽車經(jīng)過這個十字路口.
(1)求兩輛車全部繼續(xù)直行的概率.
(2)下列事件中,概率最大的是( )
A.一輛車向左轉(zhuǎn),一輛車向右轉(zhuǎn) B.兩輛車都向左轉(zhuǎn)
C.兩輛車行駛方向相同 D.兩輛車行駛方向不同
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=2x+6與反比例函數(shù)y=(k>0)的圖象交于點A(1,m),與x軸交于點B,平行于x軸的直線y=n(0<n<6)交反比例函數(shù)的圖象于點M,交AB于點N,連接BM.
(1)求m的值和反比例函數(shù)的表達(dá)式;
(2)直線y=n沿y軸方向平移,當(dāng)n為何值時,△BMN的面積最大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】附加題:(y﹣z)2+(x﹣y)2+(z﹣x)2=(y+z﹣2x)2+(z+x﹣2y)2+(x+y﹣2z)2.
求 的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com