甲、乙兩工程隊(duì)維修同一段路面,甲隊(duì)先清理路面,乙隊(duì)在甲隊(duì)清理后鋪設(shè)路面.乙隊(duì)在中途停工了一段時(shí)間,然后按停工前的工作效率繼續(xù)工作.在整個(gè)工作過程中,甲隊(duì)清理完的路面長(zhǎng)y(米)與時(shí)間x(時(shí))的函數(shù)圖象為線段OA,乙隊(duì)鋪設(shè)完的路面長(zhǎng)y(米)與時(shí)間x(時(shí))的函數(shù)圖象為折線BC﹣CD﹣DE,如圖所示,從甲隊(duì)開始工作時(shí)計(jì)時(shí).

(1)分別求線段BC、DE所在直線對(duì)應(yīng)的函數(shù)關(guān)系式.
(2)當(dāng)甲隊(duì)清理完路面時(shí),求乙隊(duì)鋪設(shè)完的路面長(zhǎng).

(1)設(shè)線段BC所在直線對(duì)應(yīng)的函數(shù)關(guān)系式為y=k1x+b1,
∵圖象經(jīng)過(3,0)、(5,50),
,解得
∴線段BC所在直線對(duì)應(yīng)的函數(shù)關(guān)系式為y=25x﹣75。
設(shè)線段DE所在直線對(duì)應(yīng)的函數(shù)關(guān)系式為y=k2x+b2
∵乙隊(duì)按停工前的工作效率為:50÷(5﹣3)=25,
∴乙隊(duì)剩下的需要的時(shí)間為:(160﹣50)÷25=。
∴點(diǎn)E的橫坐標(biāo)為6.5+=!郋(,160)。
,解得。
∴線段DE所在直線對(duì)應(yīng)的函數(shù)關(guān)系式為y=25x﹣112.5。
(2)由題意,得
甲隊(duì)每小時(shí)清理路面的長(zhǎng)為 100÷5=20,
甲隊(duì)清理完路面的時(shí)間,x=160÷20=8.
把x=8代入y=25x﹣112.5,得y=25×8﹣112.5=87.5。
答:當(dāng)甲隊(duì)清理完路面時(shí),乙隊(duì)鋪設(shè)完的路面長(zhǎng)為87.5米。

解析試題分析:(1)求出乙隊(duì)鋪設(shè)路面的工作效率,計(jì)算出乙隊(duì)完成需要的時(shí)間求出E的坐標(biāo),由待定系數(shù)法就可以求出結(jié)論。
(2)由(1)的結(jié)論求出甲隊(duì)完成的時(shí)間,把時(shí)間代入乙的解析式就可以求出結(jié)論。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

某物體從P點(diǎn)運(yùn)動(dòng)到Q點(diǎn)所用時(shí)間為7秒,其運(yùn)動(dòng)速度v(米每秒)關(guān)于時(shí)間t(秒)的函數(shù)關(guān)系如圖所示.某學(xué)習(xí)小組經(jīng)過探究發(fā)現(xiàn):該物體前進(jìn)3秒運(yùn)動(dòng)的路程在數(shù)值上等于矩形AODB的面積.由物理學(xué)知識(shí)還可知:該物體前t(3<t≤7)秒運(yùn)動(dòng)的路程在數(shù)值上等于矩形AODB的面積與梯形BDNM的面積之和.

根據(jù)以上信息,完成下列問題:
(1)當(dāng)3<t≤7時(shí),用含t的式子表示v;
(2)分別求該物體在0≤t≤3和3<t≤7時(shí),運(yùn)動(dòng)的路程s(米)關(guān)于時(shí)間t(秒)的函數(shù)關(guān)系式;
(3)求該物體從P點(diǎn)運(yùn)動(dòng)到Q總路程的時(shí)所用的時(shí)間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

甲乙兩車分別從A、B兩地相向而行,甲車出發(fā)1小時(shí)后乙車出發(fā),并以各自速度勻速行駛,兩車相遇后依然按照原速度原方向各自行駛,如圖所示是甲乙兩車之間的距離S(千米)與甲車出發(fā)時(shí)間t(小時(shí))之間的函數(shù)圖象,其中D點(diǎn)表示甲車到達(dá)B地,停止行駛.

(1 )A、B兩地的距離   千米;乙車速度是   ;a表示   
(2)乙出發(fā)多長(zhǎng)時(shí)間后兩車相距330千米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,平面直角坐標(biāo)系中,矩形OABC的對(duì)角線AC=12,tan∠ACO=

(1)求B、C兩點(diǎn)的坐標(biāo);
(2)把矩形沿直線DE對(duì)折使點(diǎn)C落在點(diǎn)A處,DE與AC相交于點(diǎn)F,求直線DE的解析式;
(3)若點(diǎn)M在直線DE上,平面內(nèi)是否存在點(diǎn)N,使以O(shè)、F、M、N為頂點(diǎn)的四邊形是菱形?若存在,請(qǐng)直接寫出點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,Rt△ABO的頂點(diǎn)A是雙曲線y=與直線y=﹣x﹣(k+1)在第二象限的交點(diǎn).AB⊥x軸于B,且SABO=
(1)求這兩個(gè)函數(shù)的解析式;
(2)求直線與雙曲線的兩個(gè)交點(diǎn)A、C的坐標(biāo)和△AOC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

在信宜市某“三華李”種植基地有A、B兩個(gè)品種的樹苗出售,已知A種比B種每株多2元,買1株A種樹苗和2株B種樹苗共需20元.
(1)問A、B兩種樹苗每株分別是多少元?
(2)為擴(kuò)大種植,某農(nóng)戶準(zhǔn)備購(gòu)買A、B兩種樹苗共360株,且A種樹苗數(shù)量不少于B種數(shù)量的一半,請(qǐng)求出費(fèi)用最省的購(gòu)買方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:單選題

拋物線y=﹣2x2經(jīng)過平移到y(tǒng)=﹣2x2﹣4x﹣5,平移方法是( 。

A.向左平移1個(gè)單位,再向上平移3各單位
B.向左平移1個(gè)單位,再向下平移3個(gè)單位
C.向右平移1個(gè)單位,再向上平移3個(gè)單位
D.向右平移1個(gè)單位,再向下平移3個(gè)單位

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:單選題

如圖是二次函數(shù)y=ax2+bx+c的圖象的一部分,對(duì)稱軸是直線x=1.
①b2>4ac;        
②4a﹣2b+c<0;
③不等式ax2+bx+c>0的解集是x≥3.5;
④若(﹣2,y1),(5,y2)是拋物線上的兩點(diǎn),則y1<y2
上述4個(gè)判斷中,正確的是( 。

A.①② B.①④ C.①③④ D.②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:單選題

已知的圖象如圖所示,其對(duì)稱軸為直線x=-1,與x軸的一個(gè)交點(diǎn)為(1,0),與y軸的交點(diǎn)在(0,2)與(0,3)之間(不包含端點(diǎn)),則下列結(jié)論正確的是(    )

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案