【題目】如圖,已知,等腰RtOAB中,∠AOB=90°,等腰RtEOF中,∠EOF=90°,連結AE、BF

求證:(1AE=BF;(2AEBF

【答案】見解析

【解析】

1)可以把要證明相等的線段AE,CF放到AEO,BFO中考慮全等的條件,由兩個等腰直角三角形得AO=BOOE=OF,再找夾角相等,這兩個夾角都是直角減去∠BOE的結果,所以相等,由此可以證明AEO≌△BFO;

2)由(1)知:∠OAC=OBF,∴∠BDA=AOB=90°,由此可以證明AEBF

解:(1)證明:在AEOBFO中,

RtOABRtEOF等腰直角三角形,

AO=OBOE=OF,∠AOE=90°-BOE=BOF

∴△AEO≌△BFO,

AE=BF;

2)延長AEBFD,交OBC,則∠BCD=ACO

由(1)知:∠OAC=OBF,

∴∠BDA=AOB=90°,

AEBF

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,AE⊥BCE,AF⊥CDF,BD分別與AE、AF相交于G、H

1)在圖中找出與△ABE相似的三角形,并說明理由;

2)若AG=AH,求證:四邊形ABCD是菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】拋物線經(jīng)過點A,0),B,0),且與y軸相交于點C

1求這條拋物線的表達式;

2)求∠ACB的度數(shù);

3設點D是所求拋物線第一象限上一點,且在對稱軸的右側,點E在線段AC上,且DEAC,當DCEAOC相似時,求點D的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場試銷一種成本為每件60元的服裝,規(guī)定試銷期間銷售單價不低于成本單價,且獲利不得高于45%,經(jīng)試銷發(fā)現(xiàn),銷售量y(件)與銷售單價x(元)符合一次函數(shù)y=kx+b,且x=65時,y=55x=75時,y=45

1)求一次函數(shù)y=kx+b的表達式;

2)若該商場獲得利潤為W元,試寫出利潤W與銷售單價x之間的關系式;銷售單價定為多少元時,商場可獲得最大利潤,最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABCD中,AC、BD交于點O,過點O作直線EF、GH,分別交ABCD的四條邊于E、G、F、H四點,連接EG、GF、FH、HE.

(1)如圖,四邊形EGFH的形狀是___;

(2)如圖,當EF⊥GH時,四邊形EGFH的形狀是___

(3)如圖,在(2)的條件下,若AC=BD,四邊形EGFH的形狀是___

(4)如圖,在(3)的條件下,若AC⊥BD,四邊形EGFH的形狀是___

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,小明從點A出發(fā),前進10m后向右轉20°,再前進10m后又向右轉20°,這樣一直下去,直到他第一次回到出發(fā)點A為止,他所走的路徑構成了一個多邊形.

(1)小明一共走了多少米?

(2)這個多邊形的內角和是多少度?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正六邊形OABCDE中,點E(﹣2,0),將該正六邊形向右平移a(a>0)個單位后,恰有兩個頂點落在反比例函數(shù)y=(k>0)的圖象上,則k的值為__

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,點DBC的中點,點E△ABC內一點,若∠AEB=∠CED=90°,AE=BE,CE=DE=2,則圖中陰影部分的面積等于__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,活動課上,小玥想要利用所學的數(shù)學知識測量某個建筑地所在山坡AE的高度,她先在山腳下的點E處測得山頂A的仰角是30°,然后,她沿著坡度i=1:1的斜坡按速度20/分步行15分鐘到達C處,此時,測得點A的俯角是15°.圖中點A、B、E、D、C在同一平面內,且點D、E、B在同一水平直線上,求出建筑地所在山坡AE的高度AB.(精確到0.1米,參考數(shù)據(jù):≈1.41).

查看答案和解析>>

同步練習冊答案