【題目】如圖,矩形ABCD中,AB=3,BC=4,點P從A點出發(fā),按A→B→C的方向在AB和BC上移動.記PA=x,點D到直線PA的距離為y,則y關于x的函數大致圖象是( 。
A. B. C. D.
【答案】D
【解析】分析:分類討論,(1)當點P在AB上移動時,DE=AD;(2)當點P在BC上移動時,作DE⊥AP于點E,證△PAB∽△ADE,得到y與x的函數關系.
詳解:(1)當點P在AB上移動時,
點D到直線PA的距離為y=DA=BC=4(0≤x≤3).
(2)如圖1,當點P在BC上移動時,作DE⊥AP于點E,
∵AB=3,BC=4,∴AC==5,
∵∠PAB+∠DAE=90°,∠ADE+∠DAE=90°,
∴∠PAB=∠ADE,
在△PAB和△ADE中,
∠PAB=∠ADE,∠ABP=∠DEA,
∴△PAB∽△ADE,
∴,∴,
∴y=(3<x≤5).
綜上可得y關于x的函數大致圖象是:
故選D.
科目:初中數學 來源: 題型:
【題目】將正整數1至2019按照一定規(guī)律排成下表:
記aij表示第i行第j個數,如a14=4表示第1行第4個數是4.
(1)直接寫出a35= ,a54= ;
(2)①若aij=2019,那么i= ,j= ,②用i,j表示aij= ;
(3)將表格中的5個陰影格子看成一個整體并平移,所覆蓋的5個數之和能否等于2026.若能, 求出這5個數中的最小數,若不能請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】畫圖,探究:
(1)一個正方體組合圖形的主視圖、左視圖(如圖1)所示.
①這個幾何體可能是(圖2)甲、乙中的 ;
②這個幾何體最多可由 個小正方體構成,請在圖3中畫出符合最多情況的一個俯視圖.
(2)如圖,已知一平面內的四個點A、B、C、D,根據要求用直尺畫圖.
①畫線段AB,射線AD;
②找一點M,使M點即在射線AD上,又在直線BC上;
③找一點N,使N到A、B、C、D四個點的距離和最短.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知平行四邊形ABCD中,AC=BC,∠ACB=45°,將三角形ABC沿著AC翻折,點B落在點E處,聯(lián)結DE,那么的值為________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在 ABCD中,∠DAB=60°,點E,F分別在CD,AB的延長線上,且AE=AD,CF=CB.
(1)求證:四邊形AFCE是平行四邊形.
(2)若去掉已知條件的“∠DAB=60°,上述的結論還成立嗎 ”若成立,請寫出證明過程;若不成立,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知:∠MON=30°,點A 、A 、A…在射線ON上,點B、B、B…在射線OM上,△ABA、△ABA、△ABA …均為等邊三角形,若OA=1,則△A BA 的邊長為____
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在同一平面中,兩條直線相交有一個交點,三條直線兩兩相交最多有3個交點,四條直線兩兩相交最多有6個交點……由此猜想,當相交直線的條數為n時,最多可有的交點數m與直線條數n之間的關系式為:m=_____.(用含n的代數式填空)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,矩形ABCD中,AB=2,BC=5,E、P分別在AD、BC上,且DE=BP=1.
(1) 判斷△BEC的形狀,并說明理由;
(2) 求證:四邊形EFPH是矩形.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,P點從點A開始以2厘米/秒的速度沿A→B→C的方向移動,點Q從點C開始以1厘米/秒的速度沿C→A→B的方向移動,在直角三角形ABC中,∠A=90°,若AB=16厘米,AC=12厘米,BC=20厘米,如果P、Q同時出發(fā),用t(秒)表示移動時間,那么:
(1)如圖1,若P在線段AB上運動,Q在線段CA上運動,試求出t為何值時,QA=AP
(2)如圖2,點Q在CA上運動,試求出t為何值時,三角形QAB的面積等于三角形ABC面積的;
(3)如圖3,當P點到達C點時,P、Q兩點都停止運動,試求當t為何值時,線段AQ的長度等于線段BP的長的
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com