【題目】投擲一枚質(zhì)地均勻的正方體骰子.

(1)下列說法中正確的有 (填序號(hào))

①向上一面點(diǎn)數(shù)為1點(diǎn)和3點(diǎn)的可能性一樣大;

②投擲6次,向上一面點(diǎn)數(shù)為1點(diǎn)的一定會(huì)出現(xiàn)1次;

③連續(xù)投擲2次,向上一面的點(diǎn)數(shù)之和不可能等于13.

(2)如果小明連續(xù)投擲了10次,其中有3次出現(xiàn)向上一面點(diǎn)數(shù)為6點(diǎn),這時(shí)小明說:投擲正方體骰子,向上一面點(diǎn)數(shù)為6點(diǎn)的概率是你同意他的說法嗎?說說你的理由.

(3)為了估計(jì)投擲正方體骰子出現(xiàn)6點(diǎn)朝上的概率,小亮采用轉(zhuǎn)盤來代替骰子做實(shí)驗(yàn).下圖是一個(gè)可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤,請(qǐng)你將轉(zhuǎn)盤分為2個(gè)扇形區(qū)域,分別涂上紅、白兩種顏色,使得轉(zhuǎn)動(dòng)轉(zhuǎn)盤,當(dāng)轉(zhuǎn)盤停止轉(zhuǎn)動(dòng)后,指針落在紅色區(qū)域的概率與投擲正方體骰子出現(xiàn)6點(diǎn)朝上的概率相同.(友情提醒:在轉(zhuǎn)盤上用文字注明顏色和扇形圓心角的度數(shù).)

【答案】(1) ①③;(2)見解析;(3)答案不唯一.

【解析】試題分析:(1)根據(jù)可能性大小來判定;

2是小明投擲正方體骰子,向上一面點(diǎn)數(shù)為6點(diǎn)的頻率,不是概率.

3)紅色區(qū)域概率是.

試題解析:(1①③

2是小明投擲正方體骰子,向上一面點(diǎn)數(shù)為6點(diǎn)的頻率,不是概率.

一般地,在一定條件下大量重復(fù)同一試驗(yàn)時(shí),隨機(jī)事件發(fā)生的頻率會(huì)在某個(gè)常數(shù)附近擺動(dòng).

只有當(dāng)試驗(yàn)次數(shù)很大時(shí),才能以事件發(fā)生的頻率作為概率的估計(jì)值.

3)本題答案不唯一,下列解法供參考

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某小組做用頻率估計(jì)概率的試驗(yàn)時(shí),統(tǒng)計(jì)了某一結(jié)果出現(xiàn)的頻率,繪制了如圖所示的折線統(tǒng)計(jì)圖,則符合這一結(jié)果的試驗(yàn)最有可能的是(  )

A. 石頭、剪刀、布的游戲中,小明隨機(jī)出的是剪刀

B. 一副去掉大小王的普通撲克牌洗勻后從中任抽一張牌的花色是紅桃

C. 暗箱中有1個(gè)紅球和2個(gè)黃球,它們只有顏色上的區(qū)別,從中任取一球是黃球

D. 擲一個(gè)質(zhì)地均勻的正六面體骰子,向上的面點(diǎn)數(shù)是4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正比例函數(shù) ()的圖像與反比例函數(shù) ()的圖像交于點(diǎn),且點(diǎn)在反比例函數(shù)的圖像上,點(diǎn)的坐標(biāo)為

(1)求正比例函數(shù)的解析式;

(2)若為射線上一點(diǎn),①若點(diǎn)的橫坐標(biāo)為, 的面積為,寫出關(guān)于的函數(shù)解析式,并指出自變量的取值范圍;②當(dāng)是等腰三角形時(shí),求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,一位籃球運(yùn)動(dòng)員在離籃圈水平距離為4m處跳起投籃,球沿一條拋物線運(yùn)行,當(dāng)球運(yùn)行的水平距離為2.5m時(shí),達(dá)到最大高度3.5m,然后準(zhǔn)確落入籃框內(nèi).已知籃圈中心離地面距離為3.05m.

(1)建立如圖所示的直角坐標(biāo)系,求拋物線所對(duì)應(yīng)的函數(shù)關(guān)系式;

(2)若該運(yùn)動(dòng)員身高1.8m,這次跳投時(shí),球在他頭頂上方0.25m處出手.:球出手時(shí),他跳離地面多高?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列7個(gè)事件中:(1)擲一枚硬幣,正面朝上.(2)從一副沒有大小王的撲克牌中抽出一張恰為黑桃.(3)隨意翻開一本有400頁的書,正好翻到第100頁.(4)天上下雨,馬路潮濕.(5)你能長(zhǎng)到身高4.(6)買獎(jiǎng)券中特等大獎(jiǎng).(7)擲一枚正方體骰子,得到的點(diǎn)數(shù)<7.其中(將序號(hào)填入題中的橫線上即可)確定事件為________;不確定事件為________;不可能事件為________;必然事件為________;不確定事件中,發(fā)生可能性最大的是________,發(fā)生可能性最小的是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列五個(gè)命題:

(1)若直角三角形的兩條邊長(zhǎng)為5和12,則第三邊長(zhǎng)是13;

(2)如果a≥0,那么=a

(3)若點(diǎn)P(a,b)在第三象限,則點(diǎn)P(﹣a,﹣b+1)在第一象限;

(4)對(duì)角線互相垂直且相等的四邊形是正方形;

(5)兩邊及第三邊上的中線對(duì)應(yīng)相等的兩個(gè)三角形全等.

其中不正確命題的個(gè)數(shù)是(

A.2個(gè) B.3個(gè) C.4個(gè) D.5個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在正方形ABCD中,MBC邊(不含端點(diǎn)BC)上任意一點(diǎn),PBC延長(zhǎng)線上一點(diǎn),N∠DCP的平分線上一點(diǎn).若∠AMN=90°,求證:AM=MN

下面給出一種證明的思路,你可以按這一思路證明,也可以選擇另外的方法證明.

證明:在邊AB上截取AE=MC,連ME

正方形ABCD中,∠B=∠BCD=90°,AB=BC

∴∠NMC=180°—∠AMN—∠AMB

=180°—∠B—∠AMB

=∠MAB=∠MAE

(下面請(qǐng)你完成余下的證明過程)

2)若將(1)中的正方形ABCD”改為正三角形ABC”(如圖2,N∠ACP的平分線上一點(diǎn),則當(dāng)∠AMN=60°時(shí),結(jié)論AM=MN是否還成立?請(qǐng)說明理由.

3)若將(1)中的正方形ABCD”改為邊形ABCD…X”,請(qǐng)你作出猜想:當(dāng)∠AMN=°時(shí),結(jié)論AM=MN仍然成立.(直接寫出答案,不需要證明)

1 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知中, , .如圖,將進(jìn)行折疊,使點(diǎn)落在線段上(包括點(diǎn)和點(diǎn)),設(shè)點(diǎn)的落點(diǎn)為,折痕為,當(dāng)是等腰三角形時(shí),點(diǎn)可能的位置共有( ).

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為

)在軸上是否存在點(diǎn),使為等腰三角形,求出點(diǎn)坐標(biāo).

)在軸上方存在點(diǎn),使以點(diǎn) , 為頂點(diǎn)的三角形與全等,畫出并請(qǐng)直接寫出點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案