【題目】如圖,已知直角梯形,,,過點,垂足為點,,點邊上的一動點,過作線段的垂直平分線,交于點,并交射線于點

1)如圖1,當(dāng)點與點重合時,求的長;

2)設(shè),,求的函數(shù)關(guān)系式,并寫出定義域;

3)如圖2,聯(lián)結(jié),當(dāng)是等腰三角形時,求的長.

【答案】1BC=5;(2;(3的長為3

【解析】

1)根據(jù)垂直平分線性質(zhì)可知,設(shè),,在中用勾股定理求出,即可解答;

2)聯(lián)結(jié),,在中,,在中,,消去二次項即可得到的函數(shù)關(guān)系式;根據(jù)點邊上的一動點結(jié)合(1)即可得出的定義域;

3)分三種情況討論,分別畫出圖形,根據(jù)相等的邊用勾股定理列方程求解即可.

解:(1)∵梯形中,,,,

,

是線段的垂直平分線,

,

中,,

又∵,,設(shè),

,

2)聯(lián)結(jié),

是線段的垂直平分線,

,

中,

中,

3)在中,,,

,

當(dāng)是等腰三角形時

①∵

中點,聯(lián)結(jié)

的中點

為梯形中位線

中點,

∴此時重合

聯(lián)結(jié)并延長交延長線于點

此時

,

∴在中,,

∴解得,(不合題意含去)

∴綜上所述,當(dāng)是等腰三角形時,的長為3

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,∠BAD=25°,∠ADC=115°,O為AB的中點,以點O為圓心、AO長為半徑作圓,恰好點D在⊙O上,連接OD,若∠EAD=25°,下列說法中不正確的是(

A.D是劣弧 的中點
B.CD是⊙O的切線
C.AE∥OD
D.∠DOB=∠EAD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于三個數(shù)a,b,c,M表示a,b,c這三個數(shù)的平均數(shù),min表示a,b,c這三個數(shù)中最小的數(shù),如:

M,min=-1

M,min

解決下列問題:

(1) 填空:mina, a-1, a+2 }=______________;

(2) min2,x的取值范圍是______________

(3) ①若Mmin,那么x______________;

②根據(jù)①,你發(fā)現(xiàn)結(jié)論Mmin,則______________;(填a,bc的大小關(guān)系);

③運用②解決問題:(寫出求解的過程)

Mmin,

xy 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了在九月份迎接高一年級的新生,決定將學(xué)生公寓樓重新裝修,現(xiàn)學(xué)校招用了甲、乙兩個工程隊.若兩隊合作,8天就可以完成該項工程;若由甲隊先單獨做3天后,剩余部分由乙隊單獨做需要18天才能完成.
(1)求甲、乙兩隊工作效率分別是多少?
(2)甲隊每天工資3000元,乙隊每天工資1400元,學(xué)校要求在12天內(nèi)將學(xué)生公寓樓裝修完成,若完成該工程甲隊工作m天,乙隊工作n天,求學(xué)校需支付的總工資w(元)與甲隊工作天數(shù)m(天)的函數(shù)關(guān)系式,并求出m的取值范圍及w的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為6的正方形ABCD中,對角線AC、BD交于點O,E是BC的中點,DE交AC于點F,則OF的長為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長為3cm,動點P從B點出發(fā)以3cm/s的速度沿著邊BC﹣CD﹣DA運動,到達A點停止運動;另一動點Q同時從B點出發(fā),以1cm/s的速度沿著邊BA向A點運動,到達A點停止運動.設(shè)P點運動時間為x(s),△BPQ的面積為y(cm2),則y關(guān)于x的函數(shù)圖象是( 。

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,若△ABC和△ADE為等邊三角形,M,N分別是BE,CD的中點,

(1)求證:△AMN是等邊三角形.
(2)當(dāng)把△ADE繞A點旋轉(zhuǎn)到圖2的位置時,CD=BE是否仍然成立?若成立請證明,若不成立請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用正方形硬紙板做三棱柱盒子,每個盒子由3個矩形側(cè)面和2個正三角形底面組成,硬紙板以如圖兩種方法裁剪(裁剪后邊角料不再利用)

A方法:剪6個側(cè)面;

B方法:剪4個側(cè)面和5個底面.

現(xiàn)有38張硬紙板,裁剪時x張用A方法,其余用B方法.

(1)用x的代數(shù)式分別表示裁剪出的側(cè)面和底面的個數(shù);

(2)若裁剪出的側(cè)面和底面恰好全部用完,則能做多少個盒子?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,將直角三角形ACB, ,AC=6,沿CB方向平移得直角三角形DEF,BF=2DG=,陰影部分面積為_______.

查看答案和解析>>

同步練習(xí)冊答案