【題目】若|x|=4,則x=.
【答案】4或—4
【解析】根據(jù)數(shù)軸的定義我們可知4或—4的絕對(duì)值等于4.
【考點(diǎn)精析】掌握絕對(duì)值是解答本題的根本,需要知道正數(shù)的絕對(duì)值是其本身,0的絕對(duì)值是0,負(fù)數(shù)的絕對(duì)值是它的相反數(shù);注意:絕對(duì)值的意義是數(shù)軸上表示某數(shù)的點(diǎn)離開(kāi)原點(diǎn)的距離.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知∠AOB與其內(nèi)部任意一點(diǎn)P,若過(guò)點(diǎn)P畫(huà)一條直線(xiàn)與OA平行,那么這樣的直線(xiàn)( )
A、有且只有一條 B、有兩條 C、有無(wú)數(shù)條 D、不存在
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知四邊形ABCD是正方形,等腰直角△AEF的直角頂點(diǎn)E在直線(xiàn)BC上(不與點(diǎn)B,C重合),F(xiàn)M⊥AD,交射線(xiàn)AD于點(diǎn)M.
(1)當(dāng)點(diǎn)E在邊BC上,點(diǎn)M在邊AD的延長(zhǎng)線(xiàn)上時(shí),如圖①,求證:AB+BE=AM;
(提示:延長(zhǎng)MF,交邊BC的延長(zhǎng)線(xiàn)于點(diǎn)H.)
(2)當(dāng)點(diǎn)E在邊CB的延長(zhǎng)線(xiàn)上,點(diǎn)M在邊AD上時(shí),如圖②;當(dāng)點(diǎn)E在邊BC的延長(zhǎng)線(xiàn)上,點(diǎn)M在邊AD上時(shí),如圖③.請(qǐng)分別寫(xiě)出線(xiàn)段AB,BE,AM之間的數(shù)量關(guān)系,不需要證明;
(3)在(1),(2)的條件下,若BE=,∠AFM=15°,則AM= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知⊙O1、⊙O2的半徑分別為3cm、5cm,且它們的圓心距為8cm,則⊙O1與⊙O2的位置關(guān)系是( )
A.外切
B.相交
C.內(nèi)切
D.內(nèi)含
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正方形ABCD,P為射線(xiàn)AB上的一點(diǎn),以BP為邊作正方形BPEF,使點(diǎn)F在線(xiàn)段CB的延長(zhǎng)線(xiàn)上,連接EA、EC.
(1)如圖1,若點(diǎn)P在線(xiàn)段AB的延長(zhǎng)線(xiàn)上,求證:EA=EC;
(2)若點(diǎn)P在線(xiàn)段AB上.
①如圖2,連接AC,當(dāng)P為AB的中點(diǎn)時(shí),判斷△ACE的形狀,并說(shuō)明理由;
②如圖3,設(shè)AB=a,BP=b,當(dāng)EP平分∠AEC時(shí),求a:b及∠AEC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】不屬于中心對(duì)稱(chēng)圖形的是( )
A.長(zhǎng)方形B.平行四邊形
C.等腰直角三角形D.線(xiàn)段
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com