【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖象與反比例函數(shù)()的圖象交于,兩點.
(1)求的值;
(2)求出一次函數(shù)與反比例函數(shù)的表達(dá)式;
(3)過點作軸的垂線,與直線和函數(shù)()的圖象的交點分別為點,,當(dāng)點在點下方時,寫出的取值范圍.
【答案】(1);(2),();(3)或.
【解析】
(1)根據(jù) 可求m;
(2)根據(jù)(1)中m的值求出A和B點坐標(biāo),運用待定系數(shù)法即可求一次函數(shù)和反比例函數(shù)解析式;
(3)觀察圖象,以A,B點作為分界點,利用數(shù)形結(jié)合的思想求解.
解:(1)由反比例函數(shù)概念可得,解得.
(2)∵m=3,
∴,,
將點,代入得解得
所以一次函數(shù)的解析式為.
由,可得反比例函數(shù)的解析式為().
(3)∵兩函數(shù)的交點坐標(biāo)是A(3,4),B(6,2),
∴當(dāng)點M在點N下方時,a的取值范圍是0<a<3或a>6.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與軸交于點和點(點在原點的左側(cè),點在原點的右側(cè)),與軸交于點,.
(1)求該拋物線的函數(shù)解析式.
(2)如圖1,連接,點是直線上方拋物線上的點,連接,.交于點,當(dāng)時,求點的坐標(biāo).
(3)如圖2,點的坐標(biāo)為,點是拋物線上的點,連接,,形成的中,是否存在點,使或等于?若存在,請直接寫出符合條件的點的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】心理學(xué)家研究發(fā)現(xiàn),一般情況下,一節(jié)課40分鐘中,學(xué)生的注意力隨教師講課的變化而變化,開始上課時,學(xué)生的注意力逐步增強,中間有一段時間學(xué)生的注意力保持較為理想的穩(wěn)定狀態(tài),隨后學(xué)生的注意力開始分散.經(jīng)過實驗分析可知,學(xué)生的注意力指標(biāo)數(shù)y隨時間x(分鐘)的變化規(guī)律如圖所示(其中AB、BC分別為線段,CD為雙曲線的一部分):
(1)開始上課后第五分鐘時與第三十分鐘時相比較,何時學(xué)生的注意力更集中?
(2)一道數(shù)學(xué)競賽題,需要講16分鐘,為了效果較好,要求學(xué)生的注意力指標(biāo)數(shù)最低達(dá)到36,那么經(jīng)過適當(dāng)安排,老師能否在學(xué)生注意力達(dá)到所需的狀態(tài)下講解完這道題目?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知點,點在反比例函數(shù)的圖象上,軸于點連結(jié)交于點,若,則與的面積比為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,(圓心在內(nèi)部)經(jīng)過兩點,交線段于點直徑交于點點關(guān)于直線的對稱點落在上.連結(jié).
求證:.
在圓心的運動過程中,
若,求的長.
若點關(guān)于的對稱點落在邊上時,求的值.(直接寫出答案)
令與邊的另一個交點為,連結(jié)交于點若,垂足為點求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形兩條對角線、交于,過任作一直線與邊,交于,,的垂直平分線與邊,交于,.設(shè)正方形的面積為,四邊形的面積為.
(1)求證:四邊形是正方形;
(2)若,求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ΔABC中,∠C=90°,點D在BC上,BD=4,AD=BC,cos∠ADC=.
(1)求DC的長;
(2)求sinB的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,破殘的圓形輪片上,弦AB的垂直平分線交弧AB于點C,交弦AB于點D.已知:AB, CD.
(1)求作此殘片所在的圓(不寫作法,保留作圖痕跡)
(2)求(1)中所作圓的半徑
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,線段AC是⊙O的直徑,過A點作直線BF交⊙O于A、B兩點,過A點作∠FAC的角平分線交⊙O于D,過D作AF的垂線交AF于E.
(1)證明DE是⊙O的切線;
(2)證明AD2=2AEOA;
(3)若⊙O的直徑為10,DE+AE=4,求AB.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com