【題目】如圖所示,梯形ABCD中,AB∥DC,∠B=90°,AD=15,AB=16,BC=12,點E是邊AB上的動點,點F是射線CD上一點,射線ED和射線AF交于點G,且∠AGE=∠DAB.
(1)求線段CD的長;
(2)如果△AEC是以EG為腰的等腰三角形,求線段AE的長;
(3)如果點F在邊CD上(不與點C、D重合),設AE=x,DF=y,求y關于x的函數(shù)解析式,并寫出x的取值范圍.

【答案】
(1)

解:(1)作DH⊥AB于H,如圖1,

易得四邊形BCDH為矩形,

∴DH=BC=12,CD=BH,

在Rt△ADH中,AH= ,

∴BH=AB﹣AH=16﹣9=7,

∴CD=7;


(2)

當EA=EG時,則∠AGE=∠GAE,

∵∠AGE=∠DAB,

∴∠GAE=∠DAB,

∴G點與D點重合,即ED=EA,

作EM⊥AD于M,如圖1,則AM= AD= ,

∵∠MAE=∠HAD,

∴Rt△AME∽Rt△AHD,

∴AE:AD=AM:AH,即AE:15= :9,解得AE= ;

當GA=GE時,則∠AGE=∠AEG,

∵∠AGE=∠DAB,

而∠AGE=∠ADG+∠DAG,∠DAB=∠GAE+∠DAG,

∴∠GAE=∠ADG,

∴∠AEG=∠ADG,

∴AE=AD=15,

綜上所述,△AEC是以EG為腰的等腰三角形時,線段AE的長為 或15;


(3)

作DH⊥AB于H,如圖2,則AH=9,HE=AE﹣AH=x﹣9,

在Rt△ADE中,DE= = ,

∵∠AGE=∠DAB,∠AEG=∠DEA,

∴△EAG∽△EDA,

∴EG:AE=AE:ED,即EG:x=x: ,

∴EG= ,

∴DG=DE﹣EG= ,

∵DF∥AE,

∴△DGF∽△EGA,

∴DF:AE=DG:EG,即y:x=( ): ,

∴y= (9<x< ).


【解析】(1)作DH⊥AB于H,如圖1,易得四邊形BCDH為矩形,則DH=BC=12,CD=BH,再利用勾股定理計算出AH,從而得到BH和CD的長; (2)分類討論:當EA=EG時,則∠AGE=∠GAE,則判斷G點與D點重合,即ED=EA,作EM⊥AD于M,如圖1,則AM= AD= ,通過證明Rt△AME∽Rt△AHD,利用相似比可計算出此時的AE長;當GA=GE時,則∠AGE=∠AEG,可證明AE=AD=15,(3)作DH⊥AB于H,如圖2,則AH=9,HE=AE﹣AH=x﹣9,先利用勾股定理表示出DE= ,再證明△EAG∽△EDA,則利用相似比可表示出EG= ,則可表示出DG,然后證明△DGF∽△EGA,于是利用相似比可表示出x和y的關系.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,弦CD⊥AB,垂足是G,F(xiàn)是CG的中點,延長AF交⊙O于E,CF=2,AF=3,則EF的長是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某企業(yè)生產并銷售某種產品,假設銷售量與產量相等,如圖中的折線ABCD、線段CD分別表示該產品每千克生產成本y1(單位:元)銷售價y2(單位:元)與產量x(單位:kg)之間的函數(shù)關系.
(1)求線段AB所表示的y1與x之間的函數(shù)表達式.
(2)當該產品產量為多少時,獲得的利潤最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB是⊙O的直徑,AC與⊙O交于點D,點E在弧BD上,連接DE,AE,連接CE并延長交AB于點F,∠AED=∠ACF.

(1)求證:CF⊥AB;
(2)若CD=4,CB=4 ,cos∠ACF= ,求EF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知函數(shù) ,則下列函數(shù)圖象正確的是( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】各頂點都在方格紙格點(橫豎格子線的交錯點)上的多邊形稱為格點多邊形.如何計算它的面積?奧地利數(shù)學家皮克(GPick,1859~1942年)證明了格點多邊形的面積公式S=a+ b﹣1,其中a表示多邊形內部的格點數(shù),b表示多邊形邊界上的格點數(shù),S表示多邊形的面積.如圖,a=4,b=6,S=4+ ×6﹣1=6

(1)請在圖中畫一個格點正方形,使它的內部只含有4個格點,并寫出它的面積.
(2)請在圖乙中畫一個格點三角形,使它的面積為 ,且每條邊上除頂點外無其它格點.(注:圖甲、圖乙在答題紙上)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在方格紙中,A,B,C三點都在小方格的頂點上(每個小方格的邊長為1).

(1)在圖甲中畫一個以A,B,C為其中三個頂點的平行四邊形,并求出它的周長.

(2)在圖乙中畫一個經(jīng)過A,B,C三點的圓,并求出圓的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,用四個螺絲將四條不可彎曲的木條圍成一個木框(形狀不限),不計螺絲大小,其中相鄰兩螺絲的距離依次為3、4、5、7,且相鄰兩木條的夾角均可調整.若調整木條的夾角時不破壞此木框,則任意兩個螺絲間的距離的最大值為(

A.6
B.7
C.8
D.9

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】李老師為了了解所教班級學生完成數(shù)學課前預習的具體情況,對本班部分學生進行了為期半個月的跟蹤調查,他將調查結果分為四類,A:很好;B:較好;C:一般;D:較差.并將調查結果繪制成以下兩幅不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖解答下列問題:

(1)李老師一共調查了多少名同學?
(2)C類女生有3名,D類男生有1名,將圖1條形統(tǒng)計圖補充完整;
(3)為了共同進步,李老師想從被調查的A類和D類學生中各隨機選取一位同學進行“一幫一”互助學習,請用列表法或畫樹形圖的方法求出所選兩位同學恰好是一位男同學和一位女同學的概率.

查看答案和解析>>

同步練習冊答案