時(shí)鐘從三點(diǎn)到三點(diǎn)四十分,分針比時(shí)針多旋轉(zhuǎn)的角度是


  1. A.
    240°
  2. B.
    220°
  3. C.
    210°
  4. D.
    200°
B
時(shí)針每分鐘轉(zhuǎn)0.5°,分針每分鐘轉(zhuǎn)6°,因此,從三點(diǎn)到三點(diǎn)四十分時(shí)針轉(zhuǎn)了20°,分針轉(zhuǎn)了240°,比時(shí)針多轉(zhuǎn)了220°,因此選B.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

28、如圖1所示,長(zhǎng)方形是由兩個(gè)正方形拼成的,正方形的邊長(zhǎng)為a,對(duì)角線為b,長(zhǎng)方形對(duì)角線為c.一只螞蟻從A點(diǎn)爬形到C點(diǎn).
(1)求螞蟻爬形的最短路線長(zhǎng)(只能按箭頭所示的三條路線走),并說明理由;
(2)如果把右邊的正方形EFBC沿EF翻轉(zhuǎn)90°得到如圖2所示的正方體相鄰的兩個(gè)面(實(shí)線表示),則螞蟻從A點(diǎn)到C點(diǎn)的最短路線長(zhǎng)是多少?請(qǐng)?jiān)趫D2中畫出路線圖,若與圖中的線段有交點(diǎn),則要標(biāo)明并說明交點(diǎn)的準(zhǔn)確位置.(可測(cè)量猜想判斷)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

探究問題:
(1)閱讀理解:
①如圖(A),在已知△ABC所在平面上存在一點(diǎn)P,使它到三角形頂點(diǎn)的距離之和最小,則稱點(diǎn)P為△ABC的費(fèi)馬點(diǎn),此時(shí)PA+PB+PC的值為△ABC的費(fèi)馬距離;
②如圖(B),若四邊形ABCD的四個(gè)頂點(diǎn)在同一圓上,則有AB•CD+BC•DA=AC•BD.此為托勒密定理;
精英家教網(wǎng)
(2)知識(shí)遷移:
①請(qǐng)你利用托勒密定理,解決如下問題:
如圖(C),已知點(diǎn)P為等邊△ABC外接圓的
BC
上任意一點(diǎn).求證:PB+PC=PA;
②根據(jù)(2)①的結(jié)論,我們有如下探尋△ABC(其中∠A、∠B、∠C均小于120°)的費(fèi)馬點(diǎn)和費(fèi)馬距離的方法:
第一步:如圖(D),在△ABC的外部以BC為邊長(zhǎng)作等邊△BCD及其外接圓;
第二步:在
BC
上任取一點(diǎn)P′,連接P′A、P′B、P′C、P′D.易知P′A+P′B+P′C=P′A+(P′B+P′C)=P′A+
 
;
第三步:請(qǐng)你根據(jù)(1)①中定義,在圖(D)中找出△ABC的費(fèi)馬點(diǎn)P,并請(qǐng)指出線段
 
的長(zhǎng)度即為△ABC的費(fèi)馬距離.
精英家教網(wǎng)
(3)知識(shí)應(yīng)用:
2010年4月,我國(guó)西南地區(qū)出現(xiàn)了罕見的持續(xù)干旱現(xiàn)象,許多村莊出現(xiàn)了人、畜飲水困難,為解決老百姓的飲水問題,解放軍某部來(lái)到云南某地打井取水.
已知三村莊A、B、C構(gòu)成了如圖(E)所示的△ABC(其中∠A、∠B、∠C均小于120°),現(xiàn)選取一點(diǎn)P打水井,使從水井P到三村莊A、B、C所鋪設(shè)的輸水管總長(zhǎng)度最小,求輸水管總長(zhǎng)度的最小值.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•龍巖模擬)現(xiàn)在是一點(diǎn)整,從現(xiàn)在開始到三點(diǎn),時(shí)針與分針成90°角的次數(shù)是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:013

時(shí)鐘從三點(diǎn)到三點(diǎn)四十分,分針比時(shí)針多旋轉(zhuǎn)的角度是

[  ]

A.240°
B.220°
C.210°
D.200°

查看答案和解析>>

同步練習(xí)冊(cè)答案