精英家教網 > 初中數學 > 題目詳情
(2013•郴州)如圖,已知BE∥DF,∠ADF=∠CBE,AF=CE,求證:四邊形DEBF是平行四邊形.
分析:首先根據平行線的性質可得∠BEC=∠DFA,再加上條件∠ADF=∠CBE,AF=CE,可證明△ADF≌△CBE,再根據全等三角形的性質可得BE=DF,根據一組對邊平行且相等的四邊形是平行四邊形進行判定即可.
解答:證明:∵BE∥DF,
∴∠BEC=∠DFA,
在△ADF和△CBE中
∠ADF=∠CBE
∠AFD=∠CEB
AF=CE
,
∴△ADF≌△CBE(AAS),
∴BE=DF,
又∵BE∥DF,
∴四邊形DEBF是平行四邊形.
點評:此題主要考查了平行四邊形的判定,關鍵是掌握一組對邊平行且相等的四邊形是平行四邊形.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

(2013•郴州)如圖,在Rt△ACB中,∠ACB=90°,∠A=25°,D是AB上一點.將Rt△ABC沿CD折疊,使B點落在AC邊上的B′處,則∠ADB′等于( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•郴州)如圖,AB是⊙O的直徑,點C是圓上一點,∠BAC=70°,則∠OCB=
20
20
°.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•郴州)如圖,△ABC中,AB=BC,AC=8,tanA=k,P為AC邊上一動點,設PC=x,作PE∥AB交BC于E,PF∥BC交AB于F.
(1)證明:△PCE是等腰三角形;
(2)EM、FN、BH分別是△PEC、△AFP、△ABC的高,用含x和k的代數式表示EM、FN,并探究EM、FN、BH之間的數量關系;
(3)當k=4時,求四邊形PEBF的面積S與x的函數關系式.x為何值時,S有最大值?并求出S的最大值.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•郴州)如圖,在直角梯形AOCB中,AB∥OC,∠AOC=90°,AB=1,AO=2,OC=3,以O為原點,OC、OA所在直線為軸建立坐標系.拋物線頂點為A,且經過點C.點P在線段AO上由A向點O運動,點Q在線段OC上由C向點O運動,QD⊥OC交BC于點D,OD所在直線與拋物線在第一象限交于點E.
(1)求拋物線的解析式;
(2)點E′是E關于y軸的對稱點,點Q運動到何處時,四邊形OEAE′是菱形?
(3)點P、Q分別以每秒2個單位和3個單位的速度同時出發(fā),運動的時間為t秒,當t為何值時,PB∥OD?

查看答案和解析>>

同步練習冊答案