如圖,P是正三角形ABC內(nèi)的一點,且PA=6,PB=8,PC=10.求∠APB的度數(shù).
如圖,∵△ABC是等邊三角形,
∴AB=AC,∠BAC=60°,
把△APC繞點A逆時針旋轉(zhuǎn)60°得到△AP′B,
由旋轉(zhuǎn)的性質(zhì),AP′=AP,P′B=PC=10,∠PAP′=60°,
∴△APP′是等邊三角形,
∴∠APP′=60°,PP′=PA=6,
∵PP′2+PB2=62+82=100=P′B2
∴△BPP′是直角三角形,∠BPP′=90°,
∴∠APB=∠APP′+∠BPP′=60°+90°=150°,
故∠APB的度數(shù)是150°.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

下列現(xiàn)象中屬于旋轉(zhuǎn)現(xiàn)象的是( 。
A.鐘擺的擺動B.飛機在飛行C.汽車在奔跑D.小鳥飛翔

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的頂點P是BC的中點,兩邊PE、PF分別交AB、AC于點E、F,當(dāng)∠EPF在△ABC內(nèi)繞點P旋轉(zhuǎn)時,下列結(jié)論錯誤的有( 。
A.EF=APB.△EPF為等腰直角三角形
C.AE=CFD.S四邊形AEPF=
1
2
S△ABC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

下列運動中屬于旋轉(zhuǎn)現(xiàn)象的是(  )
A.電梯的升降運動B.方向盤的轉(zhuǎn)動
C.籃球在地面上滾動D.汽車在彎道上行駛

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

在直角坐標(biāo)系中,正方形ABCD上點B的坐標(biāo)為(0,2),點C的坐標(biāo)為(2,1),則點D的坐標(biāo)為______;若以C為中心,把正方形ABCD按順時針旋轉(zhuǎn)180°后,點A的對應(yīng)點為A1,則A1的坐標(biāo)為______;再以A1為中心,把正方形ABCD按順時針旋轉(zhuǎn)180°后,得到點C的對應(yīng)點C1,若重復(fù)以上操作,則點A5的坐標(biāo)為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,在正方形網(wǎng)格上有一個△ABC.
(1)畫出△ABC關(guān)于直線MNn對稱圖形△A1B1C1
(它)畫出△ABC關(guān)于點四n對稱圖形△ABC;
(3)若網(wǎng)格上n最小正方形邊長為1,求△ABCn面積;
(w)△ABC能否由△A1B1C1平移s到?能否由△A1B1C1旋轉(zhuǎn)s到?這兩個三角形(指△A1B1C1與△ABC)存在什么樣n圖形變換關(guān)系?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在梯形ABCD中,ABCD,∠BCD=90°,且AB=1,BC=2,tan∠ADC=2;對角線相交于O點,等腰直角三角板的直角頂點落在梯形的頂點C上,使三角板繞點C旋轉(zhuǎn).
(1)當(dāng)三角板旋轉(zhuǎn)到圖1的位置時,猜想DE與BF的數(shù)量關(guān)系,并加以證明;
(2)在(1)問條件下,若BE:CE=1:2,∠BEC=135°,求sin∠BFE的值;
(3)當(dāng)三角板的一邊CF與梯形對角線AC重合時,作DH⊥PE于H,如圖2,若OF=
5
6
時,求PE及DH的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,⊙O的直徑AB長為6,弦AC長為2,∠ACB的平分線交⊙O于點D.
(1)求BD的長;
(2)將△ADC繞D點順時針方向旋轉(zhuǎn)90°,請補充旋轉(zhuǎn)后圖形,并計算CD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

27、如圖,按要求涂陰影:
(1)將圖形①平移到圖形②;
(2)將圖形②沿圖中虛線翻折到圖形③;
(3)將圖形③繞其右下方的頂點旋轉(zhuǎn)180°得到圖形④.

查看答案和解析>>

同步練習(xí)冊答案