【題目】(1)問題發(fā)現(xiàn)

如圖①,ABC和△AED都是等腰直角三角形,∠BAC=EAD=90°,點B在線段AE上,點C在線段AD上,請直接寫出線段BE與線段CD的數(shù)量關系:   

(2)操作探究

如圖②,將圖①中的△ABC繞點A順時針旋轉,旋轉角為α(0<α<360),請判斷線段BE與線段CD的數(shù)量關系,并說明理由.

【答案】(1)BE=CD;(2)BE=CD;證明見解析.

【解析】

(1)根據(jù)等腰直角三角形的性質可得AB=AC,AE=AD,再根據(jù)等量關系可得線段BE與線段CD的關系;

(2)根據(jù)等腰直角三角形的性質可得AB=AC,AE=AD,根據(jù)旋轉的性質可得∠BAE=∠CAD,根據(jù)SAS可證△BAE≌△CAD,根據(jù)全等三角形的性質即可求解;

解:(1)BE=CD,理由如下;

∵△ABC和△AED都是等腰直角三角形,∠BAC=EAD=90°,

AB=AC,AE=AD,

AE﹣AB=AD﹣AC,

BE=CD;

故答案為:BE=CD.

(2)∵△ABC和△AED都是等腰直角三角形,∠BAC=EAD=90°,

AB=AC,AE=AD,

由旋轉的性質得,∠BAE=CAD,

在△BAE與△CAD中,

∴△BAE≌△CAD(SAS)

BE=CD.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】一輛出租車從A地出發(fā),在一條東西走向的街道上往返,每次行駛的情況(記向東為正)記錄如下(x>5x<14,單位:m):

行駛次數(shù)

第一次

第二次

第三次

第四次

行駛情況

x

x

x﹣3

2(5﹣x)

行駛方向(填西”)

   

   

   

   

(1)請將表格補充完整;

(2)求經過連續(xù)4次行駛后,這輛出租車所在的位置;

(3)若出租車行駛的總路程為41m,求第一次行駛的路程x的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一輛客車從甲地開往乙地,一輛轎車從乙地開往甲地,兩車同時出發(fā),兩車行駛x小時后,記客車離甲地的距離為y1千米,轎車離甲地的距離為y2千米,y1、y2關于x的函數(shù)圖象如圖.

1)根據(jù)圖象,直接寫出y1、y2關于x的函數(shù)關系式;

2)當兩車相遇時,求此時客車行駛的時間;

3)兩車相距200千米時,求客車行駛的時間.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知下面三組數(shù)值:①其中是方程組的解的是(  )

A. B. C. D. 都不是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】實踐操作題 某班學生植樹若每人植7棵樹,則剩5棵樹;若每人植8棵樹,則有1人少植1棵樹,問有多少名學生植樹,有多少棵樹.

(1)假設有x名學生植樹,y棵樹,請列出關于這個問題的二元一次方程組;

(2)用列表的方法求出有多少名學生植樹,有多少棵樹.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的兩邊BC,AB分別在平面直角坐標系的x軸、y軸的正半軸上,正方形A′B′C′D′與正方形ABCD是以AC的中點O′為中心的位似圖形,已知AC=3 ,若點A′的坐標為(1,2),則正方形A′B′C′D′與正方形ABCD的相似比是( 。
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)在等邊三角形ABC中,

如圖①,D,E分別是邊AC,AB上的點且AE=CD,BDEC交于點F,則∠BFE的度數(shù)是   度;

如圖②,D,E分別是邊AC,BA延長線上的點且AE=CD,BDEC的延長線交于點F,此時∠BFE的度數(shù)是   度;

(2)如圖,在△ABC中,AC=BC,∠ACB是銳角,點OAC邊的垂直平分線與BC的交點,點D,E分別在AC,OA的延長線上,AE=CD,BDEC的延長線交于點F,若∠ACB=α,求∠BFE的大。ㄓ煤α的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,梯形AOBC的邊OB在x軸的正半軸上,AC∥OB,BC⊥OB,過點A的雙曲線y= 的一支在第一象限交梯形對角線OC于點D,交邊BC于點E.

(1)填空:雙曲線的另一支在第象限,k的取值范圍是;
(2)若點C的坐標為(2,2),當點E在什么位置時,陰影部分的面積S最?
(3)若 = ,SOAC=2,求雙曲線的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】先化簡再求值

(1)3(x2﹣2x﹣1)﹣4(3x﹣2)+2(x﹣1);其中x=﹣3

(2)2a2﹣[ab﹣4a2)+8ab]﹣ab;其中a=1,b

查看答案和解析>>

同步練習冊答案