【題目】在足球比賽中,甲、乙兩名隊員互相配合向對方球門MN進攻,當甲帶球沖到A點時,乙已跟隨沖到B點,如圖24-1-4-12.此時,甲自己直接射門好,還是迅速將球傳給乙,讓乙射門好?
【答案】考慮過M、N及A、B中任一點作圓,這里不妨過M、N、B作圓,則A點在圓外,設MA交⊙O于C , 則∠MAN<∠MCN , 而∠MCN=∠MBN , 所以∠MAN<∠MBN.因此在B點射門為好.
【解析】考慮過M、N及A、B中任一點作圓,這里不妨過M、N、B作圓,則A點在圓外,設MA交⊙O于C , 則∠MAN<∠MCN , 而∠MCN=∠MBN , 所以∠MAN<∠MBN.因此在B點射門為好.
.
在真正的足球比賽中情況比較復雜,這里僅用數(shù)學方法從兩點的靜止狀態(tài)來考慮,如果兩個點到球門的距離相差不大,要確定較好的射門位置,關鍵是看這兩點各自對球門MN的張角大小,當張角較小時,則容易被對方守門員攔截.
科目:初中數(shù)學 來源: 題型:
【題目】將6張小長方形紙片(如圖1所示)按圖2所示的方式不重疊的放在長方形ABCD內,未被覆蓋的部分恰好分割為兩個長方形,面積分別為S1和S2.已知小長方形紙片的長為a,寬為b,且a>b.當AB長度不變而BC變長時,將6張小長方形紙片還按照同樣的方式放在新的長方形ABCD內,S1與S2的差總保持不變,則a,b滿足的關系是
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,⊙A,⊙B的半徑分別為1cm,2cm,圓心距AB為5cm.如果⊙A由圖示位置沿直線AB向右平移2cm,則此時該圓與⊙B的位置關系是( 。
A.外離
B.相交
C.外切
D.內含
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,函數(shù)y= 和y= 在第一象限的圖像,點P1,P2,P3,……,P2011都是曲線上的點,它們的橫坐標分別為x1,x2,x3,……,x2011,縱坐標分別為1,3,5,7……,是連續(xù)的2011個奇數(shù),過各個P點作y的平行線,與另一雙曲線交點分別是Q1(x1,y1),Q2(x2,y2),Q3(x3,y3),……,Q2012(x2012,y2012),則y2012=___________
【答案】
【解析】由題意得,P2012(x2012,4023),因為點P2012在y=的圖象上,所以x2012=,把x2012=代入 y=中得y2012==,故答案為.
【題型】填空題
【結束】
17
【題目】已知y是x的反比例函數(shù),且當x=-4時,y=,
(1)求這個反比例函數(shù)關系式和自變量x的取值范圍;
(2)求當x=6時函數(shù)y的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,函數(shù)y= 和y= - x+4的圖像交點為A、B,原點為O,求△AOB面積.
【答案】8
【解析】整體分析:
聯(lián)立方程y= 和y= - x+4,求出點A,B的坐標,然后由公式△OAB的面積=×(x1- x2)(y2- y1)求解.
解:把y=代入y= - x+4得,
= - x+4,
解得x1=2+,x2=2-.
所以y1=2-,y2=2+.
則A(2-,2+),B(2+,2-),
所以△OAB的面積=×(x1- x2)(y2- y1)==×4×4=.
【題型】解答題
【結束】
19
【題目】如圖,直線與雙曲線相交于A(2,1)、B兩點.
(1)求m及k的值;
(2)不解關于x、y的方程組直接寫出點B的坐標;
(3)直線經(jīng)過點B嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖17-Z-12所示,等腰三角形ABC的底邊長為8 cm,腰長為5 cm,一動點P在底邊上從點B向點C以0.25 cm/s的速度移動,請你探究:當點P運動幾秒時,點P與頂點A的連線AP與腰垂直?
圖17-Z-12
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知兩條射線OM∥CN,動線段AB的兩個端點A、B分別在射線OM、CN上,且∠C=∠OAB=108°,F(xiàn)在線段CB上,OB平分∠AOF,OE平分∠COF.
(1)請在圖中找出與∠AOC相等的角,并說明理由;
(2)若平行移動AB,那么∠OBC與∠OFC的度數(shù)比是否隨著AB位置的變化而發(fā)生變化?若變化,找出變化規(guī)律;若不變,求出這個比值;
(3)在平行移動AB的過程中,是否存在某種情況,使∠OEC=2∠OBA?若存在,請求出∠OBA度數(shù);若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知圖甲是一個長為2m,寬為2n的長方形,沿圖甲中虛線用剪刀均勻分成四小塊長方形,然后按圖乙的形狀拼成一個正方形.
(1)圖乙中陰影部分正方形的邊長為 (用含字母m,n的整式表示).
(2)請用兩種不同的方法求圖乙中陰影部分的面積.
方法一: ;
方法二: .
(3)觀察圖乙,并結合(2)中的結論,你能寫出下列三個整式:(m+n)2,(m﹣n)2,mn之間的等量關系嗎?
(4)根據(jù)(3)題中的等量關系,解決如下問題:若a+b=9,ab=5,求(a﹣b)2的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,在ABCD中,點E,F(xiàn)在對角線BD上,且BE=DF,
求證:(1)AE=CF;(2)四邊形AECF是平行四邊形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com