【題目】從三角形(不是等腰三角形)一個頂點(diǎn)引出一條射線于對邊相交,頂點(diǎn)與交點(diǎn)之間的線段把這個三角形分割成兩個小三角形,如果分得的兩個小三角形中一個為等腰三角形,另一個與原三角形相似,我們把這條線段叫做這個三角形的完美分割線.
(1)如圖1,在△ABC中,CD為角平分線,∠A=40°,∠B=60°,求證:CD為△ABC的完美分割線.
(2)在△ABC中,∠A=48°,CD是△ABC的完美分割線,且△ACD為等腰三角形,求∠ACB的度數(shù).
(3)如圖2,△ABC中,AC=2,BC= ,CD是△ABC的完美分割線,且△ACD是以CD為底邊的等腰三角形,求完美分割線CD的長.
【答案】
(1)
證明:如圖1中
∵∠A=40°,∠B=60°,
∴∠ACB=80°,
∴△ABC不是等腰三角形,
∵CD平分∠ACB,
∴∠ACD=∠BCD= ∠ACB=40°,
∴∠ACD=∠A=40°,
∴△ACD為等腰三角形,
∵∠DCB=∠A=40°,∠CBD=∠ABC,
∴△BCD∽△BAC,
∴CD是△ABC的完美分割線.
(2)
解:①當(dāng)AD=CD時,如圖2
,
∠ACD=∠A=45°,
∵△BDC∽△BCA,
∴∠BCD=∠A=48°,
∴∠ACB=∠ACD+∠BCD=96°.
②當(dāng)AD=AC時,如圖3中
,
∠ACD=∠ADC= =66°,
∵△BDC∽△BCA,
∴∠BCD=∠A=48°,
∴∠ACB=∠ACD+∠BCD=114°.
③當(dāng)AC=CD時,如圖4中
∠ADC=∠A=48°,
∵△BDC∽△BCA,
∴∠BCD=∠A=48°,
∵∠ADC>∠BCD,矛盾,舍棄.
∴∠ACB=96°或114°.
(3)
證明:由已知AC=AD=2,
∵△BCD∽△BAC,
∴ ,設(shè)BD=x,
∴( )2=x(x+2),
∵x>0,
∴x= ﹣1,
∵△BCD∽△BAC,
∴ = ,
∴CD= ×2= ﹣ .
【解析】(1)根據(jù)完美分割線的定義只要證明①△ABC不是等腰三角形,②△ACD是等腰三角形,③△BDC∽△BCA即可.(2)分三種情形討論即可①如圖2,當(dāng)AD=CD時,②如圖3中,當(dāng)AD=AC時,③如圖4中,當(dāng)AC=CD時,分別求出∠ACB即可.(3)設(shè)BD=x,利用△BCD∽△BAC,得 ,列出方程即可解決問題.本題考查相似三角形的判定和性質(zhì)、等腰三角形的性質(zhì)等知識,解題的關(guān)鍵是理解題意,學(xué)會分類討論思想,屬于中考?碱}型.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】足球射門,不考慮其他因素,僅考慮射點(diǎn)到球門AB的張角大小時,張角越大,射門越好.如圖的正方形網(wǎng)格中,點(diǎn)A,B,C,D,E均在格點(diǎn)上,球員帶球沿CD方向進(jìn)攻,最好的射點(diǎn)在( )
A.點(diǎn)C
B.點(diǎn)D或點(diǎn)E
C.線段DE(異于端點(diǎn)) 上一點(diǎn)
D.線段CD(異于端點(diǎn)) 上一點(diǎn)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,CD⊥AB,垂足為D,如果CD=12,AD=16,BD=9,那么△ABC是直角三角形嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為深化義務(wù)教育課程改革,某校積極開展拓展性課程建設(shè),計劃開設(shè)藝術(shù)、體育、勞技、文學(xué)等多個類別的拓展性課程,要求每一位學(xué)生都自主選擇一個類別的拓展性課程.為了了解學(xué)生選擇拓展性課程的情況,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成如下統(tǒng)計圖(部分信息未給出):
根據(jù)統(tǒng)計圖中的信息,解答下列問題:
(1)求本次被調(diào)查的學(xué)生人數(shù).
(2)將條形統(tǒng)計圖補(bǔ)充完整.
(3)若該校共有1600名學(xué)生,請估計全校選擇體育類的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC與△CDE都是等邊三角形,點(diǎn)E、F分別為AC、BC的中點(diǎn)。
(1) 求證:四邊形EFCD是菱形;(2)如果AB=10,求D、F兩點(diǎn)間的距離。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線分別交軸,軸于A,B兩點(diǎn),點(diǎn)C為OB的中點(diǎn),點(diǎn)D在第二象限,且四邊形AOCD為矩形.
(1)直接寫出點(diǎn)A,B的坐標(biāo),并求直線AB與CD交點(diǎn)E的坐標(biāo);
(2)動點(diǎn)P從點(diǎn)C出發(fā),沿線段CD以每秒1個單位長度的速度向終點(diǎn)D運(yùn)動;同時,動點(diǎn)N從點(diǎn)A出發(fā),沿線段AO以每秒1個單位長度的速度向終點(diǎn)O運(yùn)動,過點(diǎn)P作,垂足為H,連接NP.設(shè)點(diǎn)P的運(yùn)動時間為秒.
①若△NPH的面積為1,求的值;
②點(diǎn)Q是點(diǎn)B關(guān)于點(diǎn)A的對稱點(diǎn),問是否有最小值,如果有,求出相應(yīng)的點(diǎn)P的坐標(biāo);如果沒有,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某國發(fā)生8.1級強(qiáng)烈地震,我國積極組織搶險隊赴地震災(zāi)區(qū)參與搶險工作,如圖,某探測對在地面A、B兩處均探測出建筑物下方C處由生命跡象,已知探測線與地面的夾角分別是25°和60°,且AB=4米,求該生命跡象所在位置C的深度.(結(jié)果精確到1米,參考數(shù)據(jù):sin25°≈0.4,cos25°≈0,9,tan25°≈0.5, ≈1.7)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,請在下列四個關(guān)系中,選出兩個恰當(dāng)?shù)年P(guān)系作為條件,推出四邊形ABCD是平行四邊形,并予以證明.(寫出一種即可)
關(guān)系:①AD∥BC,②AB=CD,③∠A=∠C,④∠B+∠C=180°.
已知:在四邊形ABCD中, , ;
求證:四邊形ABCD是平行四邊形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com