如圖,已知:AH⊥BC,垂足為E,ED⊥AC,垂足為D,AF⊥HC,垂足為F,∠CAF=∠AED,AF與EC交于點O,求證:HE=HF

答案:
解析:

先證△AEC≌△CFA,得到AF=CE,再證△AFH≌△CEH,得到HE=HF


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

29、如圖,已知點D、E為△ABC的邊BC上兩點.AD=AE,BD=CE,為了判斷∠B與∠C的大小關(guān)系,請你填空完成下面的推理過程,并在空白括號內(nèi)注明推理的依據(jù).
解:過點A作AH⊥BC,垂足為H.
∵在△ADE中,AD=AE(已知)
AH⊥BC(所作)
∴DH=EH(等腰三角形底邊上的高也是底邊上的中線)
又∵BD=CE(已知)
∴BD+DH=CE+EH(等式的性質(zhì))
即:BH=
CH

又∵
AH⊥BC
(所作)
∴AH為線段
BC
的垂直平分線
∴AB=AC(線段垂直平分線上的點到線段兩個端點的距離相等)
∠B=∠C
(等邊對等角)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知:在⊙O中,直徑AB=4,點E是OA上任意一點,過E作弦CD⊥AB,點F是
BC
上一點,連接AF交CE于H,連接AC、CF、BD、OD.
(1)求證:△ACH∽△AFC;
(2)猜想:AH•AF與AE•AB的數(shù)量關(guān)系,并說明你的猜想;
(3)探究:當(dāng)點E位于何處時,S△AEC:S△BOD=1:4,并加以說明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知Rt△ABC是⊙O的內(nèi)接三角形,∠BAC=90°,AH⊥BC,垂足為D,過點B作弦BF交AD于點精英家教網(wǎng)E,交⊙O于點F,且AE=BE.
(1)求證:
AB
=
AF
;
(2)若BE•EF=32,AD=6,求BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知點B、C、D在同一條直線上,△ABC和△CDE都是等邊三角形.BE交AC于F,AD交CE于H,①BE=AD;②FH∥BD;③BF=AH;④ED=EF.其中正確的個數(shù)有(  )

查看答案和解析>>

同步練習(xí)冊答案