【題目】下表列出了國外幾個城市與首都北京的時差(帶正號的表示同一時刻比北京時間早的時數),如北京時間的上午10:00時,東京時間的10點已過去了1小時,現在已是10+1=11:00.
(1)如果現在是北京時間8:00,那么現在的紐約時間是多少;
(2)此時(北京時間8:00)小明想給遠在巴黎姑媽打電話,你認為合適嗎?為什么?
(3)如果現在是芝加哥時間上午6:00,那么現在北京時間是多少?
科目:初中數學 來源: 題型:
【題目】如圖,直線AB,CD被直線EF所截,交點分別為G,H, ∠CHG=∠DHG=∠AGE.
(1)CD與EF有怎樣的位置關系?請說明理由.
(2)求∠CHG的同位角、內錯角、同旁內角的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】將正整數按如圖所示的規(guī)律在平面直角坐標系中進行排列,每個正整數對應一個整點坐標(x,y),且x,y均為整數,如數5對應的坐標為(-1,1),試探求2015對應的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知點C與某建筑物底端B相距306米(點C與點B在同一水平面上),某同學從點C出發(fā),沿同一剖面的斜坡CD行走195米至坡頂D處,斜坡CD的坡度(或坡比)i=1:2.4,在D處測得該建筑物頂端A的俯視角為20°,則建筑物AB的高度約為(精確到0.1米,參考數據:sin20°≈0.342,cos20°≈0.940,tan20°≈0.364)( )
A.29.1米
B.31.9米
C.45.9米
D.95.9米
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】對任意一個三位數n,如果n滿足各個數位上的數字互不相同,且都不為零,那么稱這個數為“相異數”,將一個“相異數”任意兩個數位上的數字對調后可以得到三個不同的新三位數,把這三個新三位數的和與111的商記為F(n).例如n=123,對調百位與十位上的數字得到213,對調百位與個位上的數字得到321,對調十位與個位上的數字得到132,這三個新三位數的和為213+321+132=666,666÷111=6,所以F(123)=6.
(1)計算:F(243),F(617);
(2)若s,t都是“相異數”,其中s=100x+32,t=150+y(1≤x≤9,1≤y≤9,x,y都是正整數),規(guī)定:k= ,當F(s)+F(t)=18時,求k的最大值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)如圖,平移三角形ABC,使點A平移到點,畫出平移后的三角形;
(2)在(1)的條件下,指出點A,B,C 的對應點,并指出AB,BC,AC的對應線段和∠A,∠B, ∠C的對應角.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知二次函數y=ax2+bx+c(a≠0)的圖象經過A(﹣1,0)、B(4,0)、C(0,2)三點.
(1)求該二次函數的解析式;
(2)點D是該二次函數圖象上的一點,且滿足∠DBA=∠CAO(O是坐標原點),求點D的坐標;
(3)點P是該二次函數圖象上位于一象限上的一動點,連接PA分別交BC,y軸與點E、F,若△PEB、△CEF的面積分別為S1、S2 , 求S1﹣S2的最大值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線y=kx+b(k≠0)與雙曲線y= (m≠0)相交于A(1,2),B(n,﹣1)兩點.
(1)求雙曲線的解析式;
(2)若A1(x1 , y1),A2(x2 , y2),A3(x3 , y3)為雙曲線上的三點,且x1<0<x2<x3 , 請直接寫出y1 , y2 , y3的大小關系;
(3)觀察圖象,請直接寫出不等式kx+b< 的解集.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com