【題目】為深化義務(wù)教育課程改革,滿足學(xué)生的個(gè)性化學(xué)習(xí)需求,某校就“學(xué)生對(duì)知識(shí)拓展,體育特長(zhǎng)、藝術(shù)特長(zhǎng)和實(shí)踐活動(dòng)四類選課意向”進(jìn)行了抽樣調(diào)查(每人選報(bào)一類),繪制了如圖所示的兩幅統(tǒng)計(jì)圖(不完整),請(qǐng)根據(jù)圖中信息,解答下列問(wèn)題:

(1)求扇形統(tǒng)計(jì)圖中m的值,并補(bǔ)全條形統(tǒng)計(jì)圖;
(2)在被調(diào)查的學(xué)生中,隨機(jī)抽一人,抽到選“體育特長(zhǎng)類”或“藝術(shù)特長(zhǎng)類”的學(xué)生的概率是多少?
(3)已知該校有800名學(xué)生,計(jì)劃開(kāi)設(shè)“實(shí)踐活動(dòng)類”課程每班安排20人,問(wèn)學(xué)校開(kāi)設(shè)多少個(gè)“實(shí)踐活動(dòng)類”課程的班級(jí)比較合理?

【答案】
(1)解:總?cè)藬?shù)=15÷25%=60(人).

A類人數(shù)=60﹣24﹣15﹣9=12(人).

∵12÷60=0.2=20%,

∴m=20.

條形統(tǒng)計(jì)圖如圖:


(2)解:抽到選“體育特長(zhǎng)類”或“藝術(shù)特長(zhǎng)類”的學(xué)生的概率=
(3)解:∵800×25%=200,200÷20=10,

∴開(kāi)設(shè)10個(gè)“實(shí)驗(yàn)活動(dòng)類”課程的班級(jí)數(shù)比較合理.


【解析】(1)根據(jù)C類人數(shù)有15人,占總?cè)藬?shù)的25%可得出總?cè)藬?shù),求出A類人數(shù),進(jìn)而可得出結(jié)論;(2)直接根據(jù)概率公式可得出結(jié)論;(3)求出“實(shí)踐活動(dòng)類”的總?cè)藬?shù),進(jìn)而可得出結(jié)論.本題考查的是條形統(tǒng)計(jì)圖與扇形統(tǒng)計(jì)圖,根據(jù)題意得出樣本總數(shù)是解答此題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某超市利用一個(gè)帶斜坡的平臺(tái)裝卸貨物,其縱斷面ACFE如圖所示. AE為臺(tái)面,AC垂直于地面,AB表示平臺(tái)前方的斜坡.斜坡的坡角∠ABC為45°,坡長(zhǎng)AB為2m.為保障安全,又便于裝卸貨物,決定減小斜坡AB的坡角,AD 是改造后的斜坡(點(diǎn)D在直線BC上),坡角∠ADC為31°.求斜坡AD底端D與平臺(tái)AC的距離CD.(結(jié)果精確到0.01m)[參考數(shù)據(jù):sin31°=0.515,cos31°=0.857,tan31°=0.601, ≈1.414].

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB為⊙O的直徑,C、D為⊙O上的兩點(diǎn),∠BAC=∠DAC,過(guò)點(diǎn)C做直線EF⊥AD,交AD的延長(zhǎng)線于點(diǎn)E,連接BC.
(1)求證:EF是⊙O的切線;
(2)若DE=1,BC=2,求劣弧 的長(zhǎng)l.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】四邊形ABCD是菱形,∠BAD=60°,AB=6,對(duì)角線AC與BD相交于點(diǎn)O,點(diǎn)E在AC上,若OE= ,則CE的長(zhǎng)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),拋物線y=x2+bx+c交x軸于A、B兩點(diǎn),交y軸于點(diǎn)C,直線y=x﹣3經(jīng)過(guò)B、C兩點(diǎn).

(1)求拋物線的解析式;
(2)過(guò)點(diǎn)C作直線CD⊥y軸交拋物線于另一點(diǎn)D,點(diǎn)P是直線CD下方拋物線上的一個(gè)動(dòng)點(diǎn),且在拋物線對(duì)稱軸的右側(cè),過(guò)點(diǎn)P作PE⊥x軸于點(diǎn)E,PE交CD于點(diǎn)F,交BC于點(diǎn)M,連接AC,過(guò)點(diǎn)M作MN⊥AC于點(diǎn)N,設(shè)點(diǎn)P的橫坐標(biāo)為t,線段MN的長(zhǎng)為d,求d與t之間的函數(shù)關(guān)系式(不要求寫出自變量t的取值范圍);
(3)在(2)的條件下,連接PC,過(guò)點(diǎn)B作BQ⊥PC于點(diǎn)Q(點(diǎn)Q在線段PC上),BQ交CD于點(diǎn)T,連接OQ交CD于點(diǎn)S,當(dāng)ST=TD時(shí),求線段MN的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列圖形中,是中心對(duì)稱圖形,但不是軸對(duì)稱圖形的是( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四邊形OABC中,AB∥OC,BC⊥x軸于C,A(1,﹣1),B(3,﹣1),動(dòng)點(diǎn)P從O點(diǎn)出發(fā),沿x軸正方向以2個(gè)單位/秒的速度運(yùn)動(dòng).過(guò)P作PQ⊥OA于Q.設(shè)P點(diǎn)運(yùn)動(dòng)的時(shí)間為t秒(0<t<2),△OPQ與四邊形OABC重疊的面積為S.

(1)求經(jīng)過(guò)O、A、B三點(diǎn)的拋物線的解析式并確定頂點(diǎn)M的坐標(biāo);
(2)用含t的代數(shù)式表示P、Q兩點(diǎn)的坐標(biāo);
(3)將△OPQ繞P點(diǎn)逆時(shí)針旋轉(zhuǎn)90°,是否存在t,使得△OPQ的頂點(diǎn)O或Q落在拋物線上?若存在,直接寫出t的值;若不存在,請(qǐng)說(shuō)明理由;
(4)求S與t的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了進(jìn)一步了解義務(wù)教育階段學(xué)生的體質(zhì)健康狀況,教育部對(duì)我市某中學(xué)九年級(jí)的部分學(xué)生進(jìn)行了體質(zhì)檢測(cè).體質(zhì)檢測(cè)的結(jié)果分為四個(gè)等級(jí):優(yōu)秀、良好、合格、不合格:根據(jù)調(diào)查結(jié)果繪制了下列兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)統(tǒng)計(jì)圖提供的信息回答以下問(wèn)題:
(1)在扇形統(tǒng)計(jì)圖中,“合格”的百分比為多少?
(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整:
(3)若該校九年級(jí)有400名學(xué)生,估計(jì)該校九年級(jí)體質(zhì)為“不合格”,等級(jí)的學(xué)生約有多少人.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函數(shù)y= 在第一象限的圖象經(jīng)過(guò)點(diǎn)B,則△OAC與△BAD的面積之差SOAC﹣SBAD為(
A.36
B.12
C.6
D.3

查看答案和解析>>

同步練習(xí)冊(cè)答案