【題目】如圖,直線的解析式為,它與坐標(biāo)軸分別交于A,B兩點(diǎn).
(1)求出點(diǎn)A的坐標(biāo);
(2)動(dòng)點(diǎn)C從y軸上的點(diǎn)出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度向y軸負(fù)半軸運(yùn)動(dòng),求出點(diǎn)C運(yùn)動(dòng)的時(shí)間t,使得為等腰三角形.
【答案】(1);(2)當(dāng)點(diǎn)C運(yùn)動(dòng)的時(shí)間t是3秒或13秒或秒或16秒時(shí),為等腰三角形.
【解析】
(1)將y=0代入解析式中即可求出結(jié)論;
(2)根據(jù)等腰三角形腰的情況分類(lèi)討論,然后分別畫(huà)出圖形,利用時(shí)間=路程÷速度分別求出對(duì)應(yīng)時(shí)間即可.
解:(1)令,則,
解得.
則點(diǎn)A的坐標(biāo)為.
(2)令,則,
則點(diǎn)B的坐標(biāo)為.
①當(dāng)時(shí),
若點(diǎn)C在點(diǎn)B上方時(shí),如下圖所示:
(秒),
若點(diǎn)C在點(diǎn)B上方時(shí),如下圖所示:
(秒);
②當(dāng)時(shí),如下圖所示
設(shè),
則,
在中,
,
解得
(秒);
③當(dāng)時(shí),
∵AO⊥BC
∴OB=OC=4
(秒).
綜上所述:當(dāng)點(diǎn)C運(yùn)動(dòng)的時(shí)間t是3秒或13秒或秒或16秒時(shí),為等腰三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(問(wèn)題)如圖①,點(diǎn)D是∠ABC的角平分線BP上一點(diǎn),連接AD,CD,若∠A與∠C互補(bǔ),則線段AD與CD有什么數(shù)量關(guān)系?
(探究)
探究一:如圖②,若∠A=90°,則∠C=180°﹣∠A=90°,即AD⊥AB,CD⊥BC,又因?yàn)?/span>BD平分∠ABC,所以AD=CD,理由是: .
探究二:若∠A≠90°,請(qǐng)借助圖①,探究AD與CD的數(shù)量關(guān)系并說(shuō)明理由.
[理論]點(diǎn)D是∠ABC的角平分線BP上一點(diǎn),連接AD,CD,若∠A與∠C互補(bǔ),則線段AD與CD的數(shù)量關(guān)系是 .
[拓展]已知:如圖③,在△ABC中,AB=AC,∠A=100°,BD平分∠ABC.
求證:BC=AD+BD
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明每天上午9時(shí)騎自行車(chē)離開(kāi)家,15時(shí)回家,他描繪了離家的距與時(shí)間的變化情況.
(1)圖象表示哪兩個(gè)變量的關(guān)系?哪個(gè)是自變量?哪個(gè)是因變量?
(2)10時(shí)和13時(shí),他分別離家多遠(yuǎn)?
(3)他到達(dá)離家最遠(yuǎn)的地方時(shí)什么時(shí)間?離家多遠(yuǎn)?
(4)11時(shí)到12時(shí)他行駛了多少千米?
(5)他由離家最遠(yuǎn)的地方返回的平均速度是多少.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】五一期間,某商場(chǎng)計(jì)劃購(gòu)進(jìn)甲、乙兩種商品,已知購(gòu)進(jìn)甲商品1件和乙商品3件共需240元;購(gòu)進(jìn)甲商品2件和乙商品1件共需130元.
(1)求甲、乙兩種商品每件的進(jìn)價(jià)分別是多少元?
(2)商場(chǎng)決定甲商品以每件40元出售,乙商品以每件90元出售,為滿(mǎn)足市場(chǎng)需求,需購(gòu)進(jìn)甲、乙兩種商品共100件,且甲種商品的數(shù)量不少于乙種商品數(shù)量的4倍,請(qǐng)你求出獲利最大的進(jìn)貨方案,并確定最大利潤(rùn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AB=AC,AD是△ABC外角的平分線,已知∠BAC=∠ACD.
(1)求證:△ABC≌△CDA;
(2)若∠B=60°,求證:四邊形ABCD是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,ABCD的對(duì)角線AC,BD相交于點(diǎn)O,AC⊥AB,AB=2,且AO∶BO=2∶3.
(1)求AC的長(zhǎng);
(2)求ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一條筆直的公路上有A、B、C三地,C地位于A、B兩地之間,甲車(chē)從A地沿這條公路勻速駛向C地,乙車(chē)從B地沿這條公路勻速駛向A地,在甲車(chē)出發(fā)至甲車(chē)到達(dá)C地的過(guò)程中,甲、乙兩車(chē)各自與C地的距離y(km)與甲車(chē)行駛時(shí)間t(h)之間的函數(shù)關(guān)系如圖所示.下列結(jié)論:①甲車(chē)出發(fā)2h時(shí),兩車(chē)相遇;②乙車(chē)出發(fā)1.5h時(shí),兩車(chē)相距170km;③乙車(chē)出發(fā)h時(shí),兩車(chē)相遇;④甲車(chē)到達(dá)C地時(shí),兩車(chē)相距40km.其中正確的是______(填寫(xiě)所有正確結(jié)論的序號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】風(fēng)電已成為我國(guó)繼煤電、水電之后的第三大電源,風(fēng)電機(jī)組主要由塔桿和葉片組成(如圖1),圖2是從圖1引出的平面圖.假設(shè)你站在A處測(cè)得塔桿頂端C的仰角是55°,沿HA方向水平前進(jìn)43米到達(dá)山底G處,在山頂B處發(fā)現(xiàn)正好一葉片到達(dá)最高位置,此時(shí)測(cè)得葉片的頂端D(D、C、H在同一直線上)的仰角是45°.已知葉片的長(zhǎng)度為35米(塔桿與葉片連接處的長(zhǎng)度忽略不計(jì)),山高BG為10米,BG⊥HG,CH⊥AH,求塔桿CH的高.(參考數(shù)據(jù):tan55°≈1.4,tan35°≈0.7,sin55°≈0.8,sin35°≈0.6)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是一塊破損的木板.
(1)請(qǐng)你設(shè)計(jì)一種方案,檢驗(yàn)?zāi)景宓膬蓷l直線邊緣 AB、CD 是否平行;
(2)若 AB∥CD,連接 BC,過(guò)點(diǎn) A 作 AM⊥BC 于 M,垂足為 M,畫(huà)出圖形,并寫(xiě)出∠BCD 與∠BAM 的數(shù)量關(guān)系.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com