如圖,AB∥CD,∠BAC與∠DCA的平分線相交于點(diǎn)G,GE⊥AC于點(diǎn)E,F(xiàn)為AC上的一點(diǎn),且FA=FG=FC,GH⊥CD于H.下列說(shuō)法:①AG⊥CG;②∠BAG=∠CGE;③S△AFG=S△CFG;④若∠EGH︰∠ECH=2︰7,則∠EGF=50°.其中正確的有
(A) ①②③④ (B) ②③④
(C) ①③④ (D) ①②④
A
【解析】①中,根據(jù)兩條直線平行,同旁內(nèi)角互補(bǔ),得∠BAC+∠ACD=180°,
再根據(jù)角平分線的概念,得∠GAC+∠GCA= ∠BAC+ ∠ACD= ×180°=90°,
再根據(jù)三角形的內(nèi)角和是180°,得AG⊥CG;
②中,根據(jù)等角的余角相等,得∠CGE=∠GAC,故∠BAG=∠CGE;
③中,根據(jù)三角形的面積公式,
∵AF=CF,∴S△AFG=S△CFG;
④中,根據(jù)題意,得:在四邊形GECH中,∠EGH+∠ECH=180度.
又∠EGH:∠ECH=2:7,則∠EGH=180°× =40°,∠ECH=180°× =140度.
∵CG平分∠ECH,∴∠FCG= ∠ECH=70°,
根據(jù)直角三角形的兩個(gè)銳角互余,得∠EGC=20°.
∵FG=FC,
∴∠FGC=∠FCG=70°,
∴∠EGF=50°.
故上述四個(gè)都是正確的.
故選A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com