拋物線頂點坐標(biāo)為(-2,3)且與x軸交于(,0)、(,0),||=6,求此二次函數(shù)的解析式.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

附加題:
(1)如圖,AB、CD是⊙O的兩條弦,它們相交于點P,連接AD、BD,已知AD=BD=4,PC=6,那么CD的長是
 

精英家教網(wǎng)
(2)閱讀材料:如圖,過△ABC的三個頂點分別作出與水平線垂直的三條直線,外側(cè)兩條直線之間的距離叫△ABC的“水平寬”(a),中間的這條直線在△ABC內(nèi)部線段的長度叫△ABC的“鉛垂高(h)”.我們可得出一種計算三角形面積的新方法:S△ABC=
1
2
ah
,即三角形面積等于水平寬與鉛垂高乘積的一半.
精英家教網(wǎng)
解答下列問題:
如圖,拋物線頂點坐標(biāo)為點C(1,4),交x軸于點A(3,0),交y軸于點B.
①求拋物線和直線AB的解析式;
②點P是拋物線(在第一象限內(nèi))上的一個動點,連接PA,PB,當(dāng)P點運動到頂點C時,求△CAB的鉛垂高CD及S△CAB;
③點P是拋物線(在第一象限內(nèi))上的一個動點,是否存在一點P,使S△PAB=
9
8
S△CAB,若存在,求出P點的坐標(biāo);若不存在,請說明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

精英家教網(wǎng)閱讀材料:
如圖1,過△ABC的三個頂點分別作出與水平線垂直的三條直線,外側(cè)兩條直線之間的距離叫△ABC的“水平寬”(a),中間的這條直線在△ABC內(nèi)部線段的長度叫△ABC的“鉛垂高(h)”.我們可得出一種計算三角形面積的新方法:S△ABC=
12
ah
,即三角形面積等于水平寬與鉛垂高乘積的一半.
解答下列問題:精英家教網(wǎng)
如圖2,拋物線頂點坐標(biāo)為點C(-1,-4),交x軸于點A(-3,0),交y軸于點B.
(1)求拋物線和直線AB的解析式;
(2)點P是拋物線(在第三象限內(nèi))上的一個動點,連接PA,PB,當(dāng)P點運動到頂點C時,求△CAB的鉛垂高CD及S△CAB;
(3)是否存在一點P,使S△PAB=S△CAB,若存在,求出P點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

10、如果將拋物線y=2x2平移,使平移后的拋物線頂點坐標(biāo)為(3,-2),那么平移后的拋物線的表達式為
y=2(x-3)2-2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,拋物線頂點坐標(biāo)為點C(1,4),交x軸于點A(3,0),交y軸于點B.
(1)求拋物線和直線AB的解析式;
(2)連結(jié)CA,CB,對稱軸x=1與線段AB交于點D,求△CAB的鉛垂高CD及S△CAB;
(3)如圖2,點P是拋物線(在第一象限內(nèi))上的一個動點,連結(jié)PA,PB,是否存在一點P,使S△PAB=
98
S△CAB?若存在,求出P點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

將拋物線y=2(x-3)2+3向右平移2個單位后,在向下平移5個單位后所得拋物線頂點坐標(biāo)為
(1,-2)
(1,-2)

查看答案和解析>>

同步練習(xí)冊答案