已知:如圖1,矩形ABCD中,AB=6,BC=8,E、F、G、H分別是AB、BC、CD、DA四條邊上的點(且不與各邊頂點重合),設(shè)m=EF+FG+GH+HE,探索m的取值范圍.
(1)如圖2,當(dāng)E、F、G、H分別是AB、BC、CD、DA四邊中點時,m=______.
(2)為了解決這個問題,小貝同學(xué)采用軸對稱的方法,如圖3,將整個圖形以CD為對稱軸翻折,接著再連續(xù)翻折兩次,
從而找到解決問題的途徑,求得m的取值范圍.①請在圖3中補全小貝同學(xué)翻折后的圖形;②m的取值范圍是______.

【答案】分析:(1)利用勾股定理求出矩形對角線的長度,再利用三角形中位線的性質(zhì)得出EH=BD,EF=AC,F(xiàn)G=BD,HG=AC,進(jìn)而求出即可;
(2)①利用軸對稱圖形的性質(zhì)得出答案即可;
②利用兩點之間線段最短以及三角形三邊關(guān)系得出m的取值范圍即可.
解答:解:(1)如圖2,連接AC,BD,
∵在矩形ABCD中,AB=6,BC=8,
∴AC=BD==10,
∵E、F、G、H分別是AB、BC、CD、DA四邊中點,
∴EH,EF,F(xiàn)G,HG,分別是△ABD,△ABC,△BCD,△ACD的中位線,
∴EH=BD,EF=AC,F(xiàn)G=BD,HG=AC,
∴m=EF+FG+GH+HE=AC+BD=10+10=20;   
                     
(2)①如圖3所示(虛線可以不畫),


②由圖形可知,四邊形的周長即折線HM的長,由兩點之間線段最短可知,折線HM≥20,即周長不小于20;                  
又由題可知,四邊形周長小于矩形ABCD的周長,即周長小于28,
故20≤m<28.
故答案為:20;20≤m<28.
點評:此題主要考查了翻折變換的性質(zhì)以及矩形的性質(zhì)和三角形中位線的性質(zhì)等知識,利用翻折變換的性質(zhì)得出折線HM與四邊形的周長關(guān)系是解題關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

28、已知:如圖,在矩形ABCD中,E、F分別是邊BC、AB上的點,且EF=ED,EF⊥ED.
求證:AE平分∠BAD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,在矩形ABCD中,BC=2,AE⊥BD,垂足為E,∠BAE=30°,那么△ECD的面積是(  )
A、2
3
B、
3
C、
3
2
D、
3
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,把矩形OCBA放置于直角坐標(biāo)系中,OC=3,BC=2,取AB的中點M,連結(jié)MC,把△MBC沿x軸的負(fù)方向平移OC的長度后得到△DAO.
(1)直接寫出點D的坐標(biāo);
(2)已知點B與點D在經(jīng)過原點的拋物線上,點P在第一象限內(nèi)的該拋物線上移動,過點P作PQ⊥x軸于點Q,連結(jié)OP.若以O(shè)、P、Q為頂點的三角形與△DAO相似,試求出點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,在矩形ABCD中,對角線AC、BD相交于點O,∠AOD=120°,AB=4,那么BC=
4
3
4
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,在矩形ABCD中,對角線AC與BD相交于點O,BE⊥AC于E,CF⊥BD于F,請你判斷BE與CF的大小關(guān)系,并說明你的理由.

查看答案和解析>>

同步練習(xí)冊答案