已知,如圖1,正方形ABCD和正方形BEFG,三點A、B、E在同一直線上,連接AG和CE,
(1)判定線段AG和線段CE有什么關系?請說明理由.
(2)將正方形BEFG,繞點順時針旋轉(zhuǎn)到圖2的位置時,(1)中的結論是否成立?請說明理由.
(3)若在圖2中連接AE和CG,且AE=2CG=4,求正方形ABCD和正方形BEFG的面積之和為______.(直接寫出結果).

解:(1)AG=CE.
理由如下:在正方形ABCD和正方形BEFG中,AB=CB,BG=BE,∠ABG=∠CBE=90°,
在△ABG和△CBE中,

∴△ABG≌△CBE(SAS),
∴AG=CE;

(2)AG=CE仍然成立.
理由如下:在正方形ABCD和正方形BEFG中,AB=CB,BG=BE,∠ABC=∠EBG=90°,
∵∠ABG=∠ABC+∠CBG,
∠CBE=∠EBG+∠CBG,
∴∠ABG=∠CBE,
在△ABG和△CBE中,
,
∴△ABG≌△CBE(SAS),
∴AG=CE;

(3)如圖2,連接AC、EG,設AG、CE交點為H,
∵△ABG≌△CBE,
∴∠BAG=∠BCE,
∴∠CAH+∠ACH=∠CAH+∠ACH+∠BCE=∠CAH+∠ACH+∠BAG=∠CAH+∠BAC=90°,
∴AG⊥CE,
在Rt△CGH中,CG2=CH2+GH2,
在Rt△AEG中,AE2=AH2+EH2,
∴CG2+AE2=CH2+GH2+AH2+EH2=(CH2+AH2)+(GH2+EH2)=AC2+EG2,
∵AE=2CG=4,
∴CG=2,
∴AC2+EG2=22+42=20,
∴正方形ABCD和正方形BEFG的面積之和為×20=10.
故答案為:10.
分析:(1)根據(jù)正方形的性質(zhì)可得AB=CB,BG=BE,∠ABG=∠CBE=90°,然后利用“邊角邊”證明△ABG和△CBE全等,再根據(jù)全等三角形對應邊相等即可得證;
(2)先求出∠ABG=∠CBE,然后利用“邊角邊”證明△ABG和△CBE全等,再根據(jù)全等三角形對應邊相等即可得證;
(3)連接AC、EG,設AG、CE交點為H,根據(jù)全等三角形對應角相等可得∠BAG=∠BCE,然后求出∠CAH+∠ACH=90°,從而證明得到AG⊥CE,再根據(jù)勾股定理求出AC2+EG2=CG2+AE2,然后根據(jù)正方形的面積等于對角線平方的一半求解即可.
點評:本題考查了正方形的性質(zhì),全等三角形的判定與性質(zhì),勾股定理的應用,(3)證明得到AG⊥CE,然后利用勾股定理得到AC2+EG2=CG2+AE2是解題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

23、已知:如圖,在正方形ABCD中,點E、F分別在BC和CD上,AE=AF.
(1)求證:BE=DF;
(2)連接AC交EF于點O,延長OC至點M,使OM=OA,連接EM,F(xiàn)M,判斷四邊形AEMF是什么特殊四邊形?并證明你的結論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,在正方形ABCD中,AB=8,點E在邊AB上點,CE的垂直平分線FP 分別交AD精英家教網(wǎng)、CE、CB于點F、H、G,交AB的延長線于點P.
(1)求證:△EBC∽△EHP;
(2)設BE=x,BP=y,求y與x之間的函數(shù)解析式,并寫出定義域;
(3)當BG=
74
時,求BP的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

24、已知,如圖,在正方形ABCD中,點E、F分別在AB上和AD的延長線上,且BE=DF,連接EF,G為EF的中點.
求證:(1)CE=CF;(2)DG垂直平分AC.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知:如圖,在正方形ABCD中,P為對角線AC上的一動點,PE⊥AB于E,PF⊥BC于F,過點P作DP的垂線交BC于點G,DG交AC于點Q.下列說法:①EF=DP;②EF⊥DP;③
DG
DP
=
2
;④
AP2+QC2
PQ2
=
2
.其中正確的是( 。
A、①②③④B、①②③
C、①②④D、①③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,在正方形ABCD中,AB=4,E為邊BC延長線上一點,連接DE,BF⊥DE,垂足為點F,BF與邊CD交于點G,連接EG.設CE=x.
(1)求∠CEG的度數(shù);
(2)當BG=2
5
時,求△AEG的面積;
(3)如果AM⊥BF,AM與BC相交于點M,四邊形AMCD的面積為y,求y關于x的函數(shù)解析式,并寫出它的定義域.

查看答案和解析>>

同步練習冊答案