精英家教網 > 初中數學 > 題目詳情
(2005•佛山)1海里等于1 852米.如果用科學記數法表示,1海里等于多少米( )
A.0.1852×104
B.1.852×103
C.18.52×102
D.185.2×101
【答案】分析:科學記數法就是將一個數字表示成(a×10的n次冪的形式).其中1≤a<10,n表示整數,n為整數位數減1,即從左邊第一位開始,在首位非零的后面加上小數點,再乘以10的n次冪.
解答:解:1 852=1.852×103米.故選B.
點評:本題考查學生對科學記數法的掌握.科學記數法要求前面的部分的絕對值是大于或等于1,而小于10,小數點向左移動3位,應該為1.852×103
練習冊系列答案
相關習題

科目:初中數學 來源:2005年全國中考數學試題匯編《尺規(guī)作圖》(01)(解析版) 題型:解答題

(2005•佛山)“三等分角”是數學史上一個著名的問題,但僅用尺規(guī)不可能“三等分角”.下面是數學家帕普斯借助函數給出的一種“三等分銳角”的方法(如圖):將給定的銳角∠AOB置于直角坐標系中,邊OB在x軸上、邊OA與函數y=的圖象交于點P,以P為圓心、以2OP為半徑作弧交圖象于點R.分別過點P和R作x軸和y軸的平行線,兩直線相交于點M,連接OM得到∠MOB,則∠MOB=∠AOB.要明白帕普斯的方法,請研究以下問題:
(1)設P(a,)、R(b,),求直線OM對應的函數表達式(用含a,b的代數式表示);
(2)分別過點P和R作y軸和x軸的平行線,兩直線相交于點Q.請說明Q點在直線OM上,并據此證明∠MOB=∠AOB;
(3)應用上述方法得到的結論,你如何三等分一個鈍角(用文字簡要說明).

查看答案和解析>>

科目:初中數學 來源:2005年全國中考數學試題匯編《圓》(12)(解析版) 題型:解答題

(2005•佛山)一座拱型橋,橋下水面寬度AB是20米,拱高CD是4米.若水面上升3米至EF,則水面寬度EF是多少?
(1)若把它看作是拋物線的一部分,在坐標系中(如圖1)可設拋物線的表達式為y=ax2+c.請你填空:
a=______,c=______,EF=______米.
(2)若把它看作是圓的一部分,則可構造圖形(如圖2)計算如下:
設圓的半徑是r米,在Rt△OCB中,易知r2=(r-4)2+102,r=14.5
同理,當水面上升3米至EF,在Rt△OGF中可計算出GF=______

查看答案和解析>>

科目:初中數學 來源:2005年全國中考數學試題匯編《二次函數》(05)(解析版) 題型:解答題

(2005•佛山)一座拱型橋,橋下水面寬度AB是20米,拱高CD是4米.若水面上升3米至EF,則水面寬度EF是多少?
(1)若把它看作是拋物線的一部分,在坐標系中(如圖1)可設拋物線的表達式為y=ax2+c.請你填空:
a=______,c=______,EF=______米.
(2)若把它看作是圓的一部分,則可構造圖形(如圖2)計算如下:
設圓的半徑是r米,在Rt△OCB中,易知r2=(r-4)2+102,r=14.5
同理,當水面上升3米至EF,在Rt△OGF中可計算出GF=______

查看答案和解析>>

科目:初中數學 來源:2005年全國中考數學試題匯編《反比例函數》(05)(解析版) 題型:解答題

(2005•佛山)“三等分角”是數學史上一個著名的問題,但僅用尺規(guī)不可能“三等分角”.下面是數學家帕普斯借助函數給出的一種“三等分銳角”的方法(如圖):將給定的銳角∠AOB置于直角坐標系中,邊OB在x軸上、邊OA與函數y=的圖象交于點P,以P為圓心、以2OP為半徑作弧交圖象于點R.分別過點P和R作x軸和y軸的平行線,兩直線相交于點M,連接OM得到∠MOB,則∠MOB=∠AOB.要明白帕普斯的方法,請研究以下問題:
(1)設P(a,)、R(b,),求直線OM對應的函數表達式(用含a,b的代數式表示);
(2)分別過點P和R作y軸和x軸的平行線,兩直線相交于點Q.請說明Q點在直線OM上,并據此證明∠MOB=∠AOB;
(3)應用上述方法得到的結論,你如何三等分一個鈍角(用文字簡要說明).

查看答案和解析>>

科目:初中數學 來源:2005年廣東省佛山市中考數學試卷(課標卷)(解析版) 題型:解答題

(2005•佛山)一座拱型橋,橋下水面寬度AB是20米,拱高CD是4米.若水面上升3米至EF,則水面寬度EF是多少?
(1)若把它看作是拋物線的一部分,在坐標系中(如圖1)可設拋物線的表達式為y=ax2+c.請你填空:
a=______,c=______,EF=______米.
(2)若把它看作是圓的一部分,則可構造圖形(如圖2)計算如下:
設圓的半徑是r米,在Rt△OCB中,易知r2=(r-4)2+102,r=14.5
同理,當水面上升3米至EF,在Rt△OGF中可計算出GF=______

查看答案和解析>>

同步練習冊答案