【題目】如圖,在扇形AOB中,∠AOB=90°,正方形CDEF的頂點(diǎn)C是的中點(diǎn),點(diǎn)D在OB上,點(diǎn)E在OB的延長線上,當(dāng)正方形CDEF的邊長為2時,陰影部分的面積為________
【答案】2π-4
【解析】
連結(jié)OC,根據(jù)在同圓中,等弧所對的圓心角相等可得∠COD=45°,從而證出△ODC為等腰直角三角形,OD=CD=2,即可求出OC的長,然后根據(jù)陰影部分的面積=扇形BOC的面積-△ODC的面積,即可求出陰影部分的面積.
解:連結(jié)OC,
∵在扇形AOB中,∠AOB=90°,正方形CDEF的頂點(diǎn)C是 的中點(diǎn),
∴∠COD=45°,
∴△ODC為等腰直角三角形,OD=CD=2
∴OC= =4,
∵陰影部分的面積=扇形BOC的面積-△ODC的面積,
即S陰影= ×π×42- ×(2 )2=2π-4.
故答案為:2π-4.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形中,對角線相交于點(diǎn),以為邊向外作等邊,連接交于若點(diǎn)為的延長線上一點(diǎn),連接,連接且平分,下列選項正確的有( )
①;②;③;④
A.個B.個C.個D.個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,菱形ABCD的頂點(diǎn)A、B在軸上,點(diǎn)A在點(diǎn)B的左側(cè),點(diǎn)D在軸的正半軸上,,點(diǎn)A的坐標(biāo)為.
(1)求D點(diǎn)的坐標(biāo).
(2)求直線AC的函數(shù)關(guān)系式.
(3)動點(diǎn)P從點(diǎn)A出發(fā),以每秒1個單位長度的速度,按照的順序在菱形的邊上勻速運(yùn)動一周,設(shè)運(yùn)動時間為秒.求為何值時,以點(diǎn)P為圓心、以1為半徑的圓與對角線AC相切?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,拋物線與直線(為常數(shù),)交于A,B兩點(diǎn),直線交軸于點(diǎn)C,點(diǎn)A的坐標(biāo)為;
(1)若,則A點(diǎn)的坐標(biāo)為__________,點(diǎn)B的坐標(biāo)為____________
(2)已知點(diǎn),拋物線與線段有兩個公共點(diǎn),求的取值范圍;
(3)①如圖1,求證:
②如圖2,設(shè)拋物線的頂點(diǎn)為F,直線交拋物線的對稱軸于點(diǎn),直線(為常數(shù),)經(jīng)過點(diǎn)A,并交拋物線的對稱軸于點(diǎn)E,若(為常數(shù))則的值是否發(fā)生變化?若不變,請求出的值;若變化,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,AO⊥BC于點(diǎn)O,OE⊥AB于點(diǎn)E,以點(diǎn)O為圓心,OE為半徑作半圓,交AO于點(diǎn)F.
(1)求證:AC是⊙O的切線;
(2)若點(diǎn)F是OA的中點(diǎn),OE=3,求圖中陰影部分的面積;
(3)在(2)的條件下,點(diǎn)P是BC邊上的動點(diǎn),當(dāng)PE+PF取最小值時,直接寫出BP的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人相約周末登花果山,甲、乙兩人距地面的高度(米)與登山時間(分)之間的函數(shù)圖象如圖所示,根據(jù)圖象所提供的信息解答下列問題:
(1)甲登山上升的速度是每分鐘 米,乙在地時距地面的高度為 米;
(2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,請求出乙登山全程中,距地面的高度(米)與登山時間(分)之間的函數(shù)關(guān)系式.
(3)登山多長時間時,甲、乙兩人距地面的高度差為50米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,C是⊙O上一點(diǎn),D是的中點(diǎn),E為OD延長線上一點(diǎn),且∠CAE=2∠C,AC與BD交于點(diǎn)H,與OE交于點(diǎn)F.
(1)求證:AE是⊙O的切線;
(2)若DH=9,tanC=,求直徑AB的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC和△ADE都是等腰直角三角形,∠ACB=∠ADE=90°,點(diǎn)F為BE的中點(diǎn),連接CF,DF.
(1)如圖1,當(dāng)點(diǎn)D在AB上,點(diǎn)E在AC上時
①證明:△BFC是等腰三角形;
②請判斷線段CF,DF的關(guān)系?并說明理由;
(2)如圖2,將圖1中的△ADE繞點(diǎn)A旋轉(zhuǎn)到圖2位置時,請判斷(1)中②的結(jié)論是否仍然成立?并證明你的判斷.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O直徑,C、D為⊙O上不同于A、B的兩點(diǎn),∠ABD=2∠BAC,連接CD.過點(diǎn)C作CE⊥DB,垂足為E,直線AB與CE相交于F點(diǎn).
(1)求證:CF為⊙O的切線;
(2)當(dāng)BF=5,時,求BD的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com