【題目】如果用平面截掉一個長方體的一個角(即切去一個三棱錐),則剩下的幾何體最多有_____頂點,最少有_____條棱.

【答案】10 12

【解析】

當(dāng)截面截取由三個頂點組成的面時可以得到三角形,剩下的幾何體有7個頂點、12條棱、7個面;當(dāng)截面截取一棱的一點和兩底點組成的面時可剩下幾何體有8個頂點、13條棱、7個面;當(dāng)截面截取由2條棱中點和一頂點組成的面時剩下幾何體有9個頂點、14條棱、7個面;當(dāng)截面截取由三棱中點組成的面時,剩余幾何體有10個頂點、15條棱、7個面.

解:剩下的幾何體可能有:7個頂點、12條棱、7個面;

8個頂點、13條棱、7個面;

9個頂點、14條棱、7個面;

10個頂點、15條棱、7個面.

如圖所示:則剩下的幾何體最多有10頂點,最少有12條棱,

故答案為:10,12

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在第四象限內(nèi)的矩形OABC,兩邊在坐標(biāo)軸上,一個頂點在一次函數(shù)y0.5x3的圖象上,當(dāng)點A從左向右移動時,矩形的周長與面積也隨之發(fā)生變化,設(shè)線段OA的長為m,矩形的周長為C,面積為S

1)試分別寫出CSm的函數(shù)解析式,它們是否為一次函數(shù)?

2)能否求出當(dāng)m取何值時,矩形的周長最大?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O為正方形ABCD的外接圓,E為弧BC上一點,AFDEF,連OF、OD.

(1)求證:AF=EF;

(2)若,求sinDOF的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了傳承中華優(yōu)秀傳統(tǒng)文化,某校組織八年級學(xué)生參加了“漢字聽寫”大賽,賽后發(fā)現(xiàn)所有參賽學(xué)生的成績均不低于50分.為了更好地了解大賽的成績分布情況,隨機抽取了其中若干名學(xué)生的成績(成績x取整數(shù),總分100分)作為樣本進行整理,繪制如下不完整的條形統(tǒng)計圖.

漢字聽寫大賽成績分數(shù)段統(tǒng)計表

分數(shù)段

頻數(shù)

2

6

9

18

15

漢字聽寫大賽成績分數(shù)段條形統(tǒng)計圖

(1)補全條形統(tǒng)計圖.

(2)這次抽取的學(xué)生成績的中位數(shù)在________的分數(shù)段中;這次抽取的學(xué)生成績在的分數(shù)段的人數(shù)占抽取人數(shù)的百分比是_______.

(3)若該校八年級一共有學(xué)生350名,成績在90分以上(含90分)為“優(yōu)”,則八年級參加這次比賽的學(xué)生中成績“優(yōu)”等的約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知E、FG、H分別是菱形ABCD的邊ABBC、CDAD的中點,則四邊形EFGH的形狀一定是(

A. 平行四邊形B. 矩形C. 菱形D. 正方形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將有規(guī)律的整數(shù)1,﹣2,3,﹣4,5,﹣6按照如圖所示的方式排成數(shù)陣.

1)用字母表示如圖橫行任意三個相鄰的數(shù)的關(guān)系   、   、   

2)如圖,方框中九個數(shù)之和與正中間數(shù)17有什么關(guān)系?請計算說明.

3)用這樣的方框在數(shù)陣中移動(一直保持框出數(shù)陣中的9個數(shù)),那么方框中九個數(shù)之和與正中間數(shù)關(guān)系,還如(2)中一樣成立嗎?請用字母解釋其中所包含的規(guī)律.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】A、B兩地相距480km,C地在AB兩地之間.一輛轎車以100km/h的速度從A地出發(fā)勻速行駛,前往B.同時,一輛貨車以80km/h的速度從B地岀發(fā),勻速行駛,前往A.

(1)當(dāng)兩車相遇時,求轎車行駛的時間;

(2)當(dāng)兩車相距120km,求轎車行駛的時間;

(3)若轎車到達B地后,立刻以120km/h的速度原路返回,再次經(jīng)過C,兩次經(jīng)過C地的時間間隔為2.2h,C地距離A地路程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在平行四邊形ABCD和矩形ABEF中,ACDF相交于點G.

(1) 試說明DFCE;

(2) ACBFDF,求∠ACE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀理解題:

定義:如果一個數(shù)的平方等于﹣1,記為i2=1,這個數(shù)i叫做虛數(shù)單位.那么形如a+bia,b為實數(shù))的數(shù)就叫做復(fù)數(shù),a叫這個復(fù)數(shù)的實部,b叫做這個復(fù)數(shù)的虛部,它的加,減,乘法運算與整式的加,減,乘法運算類似.例如計算:(2+i+34i=53i

1)填空:i3=   2i4=   ;

2)計算:①(2+i)(2i);

②(2+i2;

3)若兩個復(fù)數(shù)相等,則它們的實部和虛部必須分別相等,完成下列問題:已知:(x+3y+3i=1x)﹣yi,(x,y為實數(shù)),求x,y的值.

4)試一試:請你參照i2=1這一知識點,將m2+25m為實數(shù))因式分解成兩個復(fù)數(shù)的積.

查看答案和解析>>

同步練習(xí)冊答案