【題目】如圖,已知AB是⊙O的直徑,點C,D在⊙O上,點E在⊙O外,∠EAC=∠B.
(1)求證:直線AE是⊙O的切線
(2)若∠D=60°,AB=6時,求劣弧的長(結(jié)果保留π)
【答案】
(1)
解:∵AB是⊙O的直徑,
∴∠ACB=90°,
∴∠CBA+∠CAB=90°,
∵∠EAC=∠B,
∴∠CAE+∠BAC=90°,
即 BA⊥AE.
∴AE是⊙O的切線.
(2)
解:連接CO,
∵AB=6,
∴AO=3,
∵∠D=60°,
∴∠AOC=120°,
∴==2π.
【解析】(1)根據(jù)圓周角定理可得∠ACB=90°,進(jìn)而可得∠CBA+∠CAB=90°,由∠EAC=∠B可得∠CAE+∠BAC=90°,從而可得直線AE是⊙O的切線;
(2)連接CO,計算出AO長,再利用圓周角定理可得∠AOC的度數(shù),然后利用弧長公式可得答案.
【考點精析】解答此題的關(guān)鍵在于理解切線的判定定理的相關(guān)知識,掌握切線的判定方法:經(jīng)過半徑外端并且垂直于這條半徑的直線是圓的切線,以及對弧長計算公式的理解,了解若設(shè)⊙O半徑為R,n°的圓心角所對的弧長為l,則l=nπr/180;注意:在應(yīng)用弧長公式進(jìn)行計算時,要注意公式中n的意義.n表示1°圓心角的倍數(shù),它是不帶單位的.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,分別以點A和B為圓心,以相同的長(大于AB)為半徑作弧,兩弧相交于點M和N,作直線MN交AB于點D,交BC于點E,連接CD,下列結(jié)論錯誤的是( 。
A.AD=BD
B.BD=CD
C.∠A=∠BED
D.∠ECD=∠EDC
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點A1 , A2 , A3…都在x軸上,點B1 , B2 , B3…都在直線y=x上,△OA1B1 , △B1A1A2 , △B2B1A2 , △B2A2A3 , △B3B2A3…都是等腰直角三角形,且OA1=1,則點B2015的坐標(biāo)是( 。
A.(22014 , 22014)
B.(22015 , 22015)
C.(22014 , 22015)
D.(22015 , 22014)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是半圓O的直徑,C是AB延長線上的一點,CD與半圓O相切于點D,連接AD,BD.
(1)求證:∠BAD=∠BDC;
(2)若∠BDC=28°,BD=2,求⊙O的半徑.(精確到0.01)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,梯形ABCD中,AD∥BC,∠BAD=90°,CE⊥AD于點E,AD=8cm,BC=4cm,AB=5cm.從初始時刻開始,動點P,Q 分別從點A,B同時出發(fā),運動速度均為1cm/s,動點P沿A﹣B﹣﹣C﹣﹣E的方向運動,到點E停止;動點Q沿B﹣﹣C﹣﹣E﹣﹣D的方向運動,到點D停止,設(shè)運動時間為xs,△PAQ的面積為ycm2 , (這里規(guī)定:線段是面積為0的三角形)
解答下列問題:
(1)當(dāng)x=2s時,y=cm2;當(dāng)x= s時,y=cm2 .
(2)當(dāng)5≤x≤14 時,求y與x之間的函數(shù)關(guān)系式.
(3)當(dāng)動點P在線段BC上運動時,求出 S梯形ABCD時x的值.
(4)直接寫出在整個運動過程中,使PQ與四邊形ABCE的對角線平行的所有x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個不透明袋子中有1個紅球,1個綠球和n個白球,這些球除顏色外無其他差別.
(1)當(dāng)n=1時,從袋中隨機摸出1個球,摸到紅球和摸到白球的可能性是否相同?(在答題卡相應(yīng)位置填“相同”或“不相同”);
(2)從袋中隨機摸出一個球,記錄其顏色,然后放回,大量重復(fù)該實驗,發(fā)現(xiàn)摸到綠球的頻率穩(wěn)定于0.25,則n的值是
(3)在一個摸球游戲中,所有可能出現(xiàn)的結(jié)果如下:
根據(jù)樹狀圖呈現(xiàn)的結(jié)果,求兩次摸出的球顏色不同的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,等邊△ABC中,D為AC中點,∠EDF=120°,DF交AB于F點,且AF=nBF(n為常數(shù),且n>1).
(1)求證:DF=DE;
(2)如圖1,求證:AF﹣CE=AB;
(3)如圖2,當(dāng)n= 時,過D作DM⊥BC于M點,C為EM的中點.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com